{"title":"Tunable Scanning Fiber Optic MEMS-Probe for Endoscopic Optical Coherence Tomography","authors":"K. Aljasem, A. Seifert, H. Zappe","doi":"10.1109/MEMSYS.2009.4805555","DOIUrl":null,"url":null,"abstract":"A novel 3D probe for endoscopic optical coherence tomography (OCT) based on tunable and movable MEMS components is presented. A tunable micro-lens and a 2D scanning micro-mirror are integrated into a probe to enable two-dimensional movement with simultaneous dynamic focusing of a beam onto a target. The tunable system is based on a pneumatically actuated micro-lens for the axial movement of the focus position concomitantly with the depth scan of the OCT, whereas an electrostatically actuated micro-mirror is integrated to obtain the 2D lateral scan of the beam. High resolution imaging at high scan rates is expected for the entire scan depth using this concept. Probe design, assembly, and integration into an OCT system are discussed.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A novel 3D probe for endoscopic optical coherence tomography (OCT) based on tunable and movable MEMS components is presented. A tunable micro-lens and a 2D scanning micro-mirror are integrated into a probe to enable two-dimensional movement with simultaneous dynamic focusing of a beam onto a target. The tunable system is based on a pneumatically actuated micro-lens for the axial movement of the focus position concomitantly with the depth scan of the OCT, whereas an electrostatically actuated micro-mirror is integrated to obtain the 2D lateral scan of the beam. High resolution imaging at high scan rates is expected for the entire scan depth using this concept. Probe design, assembly, and integration into an OCT system are discussed.