{"title":"基于微流控通道中纳米颗粒动态图像化的表面声波驱动主动等离子体","authors":"Jinjie Shi, Yuebing Zheng, T. Huang","doi":"10.1109/MEMSYS.2009.4805386","DOIUrl":null,"url":null,"abstract":"The nanoparticles redistribution in a microfluidic channel through a dynamic patterning process will locally change the refractive index of the medium around the nanodisk arrays, as well as the LSPR. The dynamic patterning of nanoparticles was achieved by a standing surface acoustic wave (SSAW), from which the acoustic force generated and force the particles to the pressure nodes. The SSAW were formed through two parallel interdigital transducers (IDTs) on a LiNbO3 substrate, on which the gold nanodisk arrays were fabricated through a nanosphere lithography. A PDMS microchannel was aligned with the IDTs and bonded with the substrate to cover the nanodisk arrays. A solution of fluorescent polystyrene beads (diameter: 320 nm) was injected into the channel through a pressure driven flow. When SSAW was on, the original peak (¿=694 nm) is split into two peaks at ¿1= 662 nm and ¿2= 746 nm, respectively.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Surface Acoustic Wave-Driven Active Plasmonicsbased on Dynamic Patterning of Nanoparticles in Microfluidic Channels\",\"authors\":\"Jinjie Shi, Yuebing Zheng, T. Huang\",\"doi\":\"10.1109/MEMSYS.2009.4805386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanoparticles redistribution in a microfluidic channel through a dynamic patterning process will locally change the refractive index of the medium around the nanodisk arrays, as well as the LSPR. The dynamic patterning of nanoparticles was achieved by a standing surface acoustic wave (SSAW), from which the acoustic force generated and force the particles to the pressure nodes. The SSAW were formed through two parallel interdigital transducers (IDTs) on a LiNbO3 substrate, on which the gold nanodisk arrays were fabricated through a nanosphere lithography. A PDMS microchannel was aligned with the IDTs and bonded with the substrate to cover the nanodisk arrays. A solution of fluorescent polystyrene beads (diameter: 320 nm) was injected into the channel through a pressure driven flow. When SSAW was on, the original peak (¿=694 nm) is split into two peaks at ¿1= 662 nm and ¿2= 746 nm, respectively.\",\"PeriodicalId\":187850,\"journal\":{\"name\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2009.4805386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Acoustic Wave-Driven Active Plasmonicsbased on Dynamic Patterning of Nanoparticles in Microfluidic Channels
The nanoparticles redistribution in a microfluidic channel through a dynamic patterning process will locally change the refractive index of the medium around the nanodisk arrays, as well as the LSPR. The dynamic patterning of nanoparticles was achieved by a standing surface acoustic wave (SSAW), from which the acoustic force generated and force the particles to the pressure nodes. The SSAW were formed through two parallel interdigital transducers (IDTs) on a LiNbO3 substrate, on which the gold nanodisk arrays were fabricated through a nanosphere lithography. A PDMS microchannel was aligned with the IDTs and bonded with the substrate to cover the nanodisk arrays. A solution of fluorescent polystyrene beads (diameter: 320 nm) was injected into the channel through a pressure driven flow. When SSAW was on, the original peak (¿=694 nm) is split into two peaks at ¿1= 662 nm and ¿2= 746 nm, respectively.