Molecular Breeding最新文献

筛选
英文 中文
Identification of novel candidate gene associated with early heading on chromosome 5B in wheat mutant jg1489. 小麦突变体jg1489 5B染色体早抽穗相关新候选基因的鉴定
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-06-18 eCollection Date: 2025-07-01 DOI: 10.1007/s11032-025-01580-2
Qingxia Chang, Hongchun Xiong, Huijun Guo, Yongdun Xie, Linshu Zhao, Jiayu Gu, Huiyuan Li, Shirong Zhao, Yuping Ding, Yumei Zhang, Luxiang Liu
{"title":"Identification of novel candidate gene associated with early heading on chromosome 5B in wheat mutant <i>jg1489</i>.","authors":"Qingxia Chang, Hongchun Xiong, Huijun Guo, Yongdun Xie, Linshu Zhao, Jiayu Gu, Huiyuan Li, Shirong Zhao, Yuping Ding, Yumei Zhang, Luxiang Liu","doi":"10.1007/s11032-025-01580-2","DOIUrl":"10.1007/s11032-025-01580-2","url":null,"abstract":"<p><p>Heading date (HD) is a critical agronomic trait that influences wheat's adaptation to environmental conditions and plays a pivotal role in yield stability. In this study, an early-heading mutant <i>jg1489</i> was identified following γ-ray irradiation of the wild type (WT) wheat variety Jing411. This mutant headed 2-3 days earlier than the WT, with no significant differences in other yield-related traits. Bulked Segregant Analysis (BSA), genetic linkage analysis of the F<sub>2</sub> population from a cross between the WT and mutant, and phenotypic validation in F<sub>2:3</sub> lines were used to finely map the HD gene to a 12.4-Mb region on chromosome 5B. Transcriptome analysis of developing spikes from both WT and <i>jg1489</i> at three key developmental stages revealed that differentially expressed genes (DEGs) were significantly enriched in pathways related to photosynthesis and photosynthesis-antenna proteins, suggesting a potential role in photosynthetic regulation. Within the mapped region, six high-probability candidate genes were identified based on sequence variation and expression patterns. Functional annotation, supported by studies of homologs in other species, highlighted three genes encoding serine proteases, bromodomain-containing protein, and UTP-glucose-1-phosphate uridylyltransferase as the most likely regulators of HD. These findings provide valuable insights into the genetic regulation of HD in wheat and support the development of new wheat varieties with optimized heading times.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01580-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"57"},"PeriodicalIF":2.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144476057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonoid compounds as a way to identify sources of carrot resistance to Alternaria leaf blight. 黄酮类化合物作为胡萝卜抗叶枯病来源的鉴定方法。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-06-14 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01573-1
Marie Louisa Ramaroson, Claude Emmanuel Koutouan, Angelina El Ghaziri, Raymonde Baltenweck, Patricia Claudel, Philippe Hugueney, Sébastien Huet, Anita Suel, Linda Voisine, Mathilde Briard, Jean Jacques Helesbeux, Latifa Hamama, Valérie Le Clerc, Emmanuel Geoffriau
{"title":"Flavonoid compounds as a way to identify sources of carrot resistance to Alternaria leaf blight.","authors":"Marie Louisa Ramaroson, Claude Emmanuel Koutouan, Angelina El Ghaziri, Raymonde Baltenweck, Patricia Claudel, Philippe Hugueney, Sébastien Huet, Anita Suel, Linda Voisine, Mathilde Briard, Jean Jacques Helesbeux, Latifa Hamama, Valérie Le Clerc, Emmanuel Geoffriau","doi":"10.1007/s11032-025-01573-1","DOIUrl":"10.1007/s11032-025-01573-1","url":null,"abstract":"<p><p>Breeding varieties that are highly resistant to Alternaria leaf blight is crucial to enable carrot growers to drastically reduce their use of synthetic fungicides. Some sources of resistance have been identified in recent years, but in limited number and the genetic control as well as the screening for resistance remain complex and tedious. Flavonoid compounds have been reported to be involved in plant resistance to biotic or abiotic stresses. Their level of variation could therefore be a way of assisting screening activities for resistance. The aim of the study is to validate this link throughout the carrot growth cycle, in various environments and across a wide genetic diversity. A kinetic study showed that three flavonoid compounds are differentially accumulated between resistant and susceptible accessions as early as the 2-leaf stage and all along the plant development. Moreover, this differential is maintained throughout the potential infectious process in different environments. The analysis of a large range of accessions representing a very wide diversity of geographical origins, genetic structures, breeders and varietal types validates the link between resistance and the content in flavonoid compounds. These results open up extremely interesting prospects for the development of a marker-assisted early selection tool that would facilitate the screening and introgression of resistances into elite material, a complex task due to the polygenic control of resistance and biennial nature of the crop.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01573-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"55"},"PeriodicalIF":2.6,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144302517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural variation in the GH1 promoter regulates the hull color of rice. GH1启动子的结构变异调控稻壳颜色。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-29 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01569-x
Chengxing Du, Hao Wang, Guangrong Zhong, Xilan Yan, Kehan Di, Longkang Li, Senhai Zhang, Nangu Yang, Yangkai Wang, Weilan Chen, Hua Yuan, Bin Tu, Jiawei Xiong, Zhaohui Zhong, Yuping Wang, Shigui Li, Peng Qin, Bingtian Ma
{"title":"Structural variation in the <i>GH1</i> promoter regulates the hull color of rice.","authors":"Chengxing Du, Hao Wang, Guangrong Zhong, Xilan Yan, Kehan Di, Longkang Li, Senhai Zhang, Nangu Yang, Yangkai Wang, Weilan Chen, Hua Yuan, Bin Tu, Jiawei Xiong, Zhaohui Zhong, Yuping Wang, Shigui Li, Peng Qin, Bingtian Ma","doi":"10.1007/s11032-025-01569-x","DOIUrl":"10.1007/s11032-025-01569-x","url":null,"abstract":"<p><p>Rice hull color (HC) is crucial for improving the mechanization efficiency of hybrid rice seed production. However, the genetic resources for hull color currently available for practical production are limited, highlighting an urgent need to explore natural variations that can be utilized in breeding. In this study, we conducted a genome-wide association study (GWAS) on the hull color of 301 rice germplasm resources and identified a significant quantitative trait locus (QTL) <i>qHC3.2</i> on chromosome 3. In this QTL, we identified a 7.3 kb natural structural variation (SV) in the <i>Golden Hull 1</i> (<i>GH1)</i> promoter region, which suppresses the expression of <i>GH1</i> and leads to the golden hull phenotype. We have screened seven germplasm resources that contain this natural variation. By introducing <i>GH1</i>™ into U1S, the hull color of U1S™ remains stable and is unaffected by drying time, demonstrating its potential value for breeding applications. Our study provides valuable natural variations and germplasm resources for the mechanized production of hybrid rice.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01569-x.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"53"},"PeriodicalIF":2.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a semi-dwarf dominant genic male sterile wheat with seed red fluorescence as a visible marker. 以种子红色荧光为可见标记的半矮秆显性基因不育小麦的选育。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-29 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01571-3
Ke Zheng, Xiaonan Zhou, Ningyao Xu, Demei Liu, Haiqing Wang
{"title":"Development of a semi-dwarf dominant genic male sterile wheat with seed red fluorescence as a visible marker.","authors":"Ke Zheng, Xiaonan Zhou, Ningyao Xu, Demei Liu, Haiqing Wang","doi":"10.1007/s11032-025-01571-3","DOIUrl":"10.1007/s11032-025-01571-3","url":null,"abstract":"<p><p>Taigu genic male-sterile wheat, containing the dominant gene <i>male sterile</i> (<i>Ms</i>) <i>2</i>, shows completely male-sterility in different genetic background and under various environments. The development of Aibai wheat with tightly linked <i>Ms2</i> and <i>Reduced height</i> (<i>Rht</i>)<i>-D1c</i>, offers possibility for identifying the male-sterile plants by investigation of reduced plant height. However, due to the extreme dwarfism of Aibai wheat caused by <i>Rht-D1c</i>, it inhabits a shadowed microenvironment caused by its fertile sibling plants. This results in delayed maturation of sterile plant progeny. In order to develop a novel germplasm with new visible marker for sorting male sterile plants conferred by <i>Ms2</i>, a binary vector containing <i>Bar</i>, <i>Ms2</i>, <i>Rht-D1b</i>, and <i>DsRed</i> driven by the aleurone-specific promoter <i>Ltp2</i> was constructed and introduced into the wheat Fielder using <i>Agrobacterium</i>-mediated transformation in this study. After investigation of the fertility, plant height and seed fluorescence of positive transgenic wheat plants, a line exhibited semi-dwarf male sterility, which could be reliably identified by the aleurone-specifically expressed red fluorescence in seeds, serving as a genetically stable reporter. Therefore, this study provides a novel male-sterile wheat that offers a powerful tool for hybrid seed production and facilitates genetic improvement in wheat through recurrent selection.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01571-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"54"},"PeriodicalIF":2.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marker assisted introgression of bacterial leaf blight and cowpea mosaic virus resistance into an elite cowpea cultivar C-152. 标记辅助对豇豆优良品种C-152的白叶枯病和花叶病毒抗性的导入。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-28 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01570-4
Hirenallur Chandappa Lohithaswa, Hebse Bhojappa Dinesh, Sidramappa Channappa Talekar, Kannalli Paramashivaiah Viswanatha, Mallana Goudra Mallikarjuna, Muntagodu Shreekanth Sowmya, Thaggihalli Veeranna Krishna, Poonam Singh, Dasannanamalige Siddeshi Ambika
{"title":"Marker assisted introgression of bacterial leaf blight and cowpea mosaic virus resistance into an elite cowpea cultivar C-152.","authors":"Hirenallur Chandappa Lohithaswa, Hebse Bhojappa Dinesh, Sidramappa Channappa Talekar, Kannalli Paramashivaiah Viswanatha, Mallana Goudra Mallikarjuna, Muntagodu Shreekanth Sowmya, Thaggihalli Veeranna Krishna, Poonam Singh, Dasannanamalige Siddeshi Ambika","doi":"10.1007/s11032-025-01570-4","DOIUrl":"10.1007/s11032-025-01570-4","url":null,"abstract":"<p><p>Cowpea is an important grain legume crop and a source of vegetarian protein. C-152, a popular and widely adapted variety of cowpea, became susceptible to major cowpea diseases, viz., bacterial leaf blight (BLB) and cowpea mosaic virus (CpMV). Thus, in the current investigation, we have introgressed BLB and CpMV resistance from V-16 and V-57817, respectively, to the C-152 variety. A marker assisted simultaneous and stepwise backcross breeding scheme was used to recover an improved version of C-152 with resistance to BLB and CpMV diseases. Foreground (CISP markers VuMt401 and VuMt397 for BLB and SSR markers MA15 and MA80 for CpMV) and background selections were practiced using gene-specific and recurrent genome specific (72 markers) polymorphic markers. Two independent BC<sub>2</sub>F<sub>4</sub> lines from each cross possessing <i>blb-1</i> and <i>cowpea mosaic resistance</i> gene with maximum genome recovery of the C-152 were inter-crossed to derive an inter-cross (IC) F<sub>4</sub> population. Among the 10 promising ICF<sub>4</sub> progenies, the line MC 17-2 (KBC-12), showing high yielding with resistance to BLB and CpMV, was selected. The superiority of the cowpea line MC 17-2 was evident in terms of a yield advantage of 8.68 to 28.68%, 9.30-47.00%, 1.10-8.10% over different check varieties in the initial varietal trial, advanced varietal trial (AVT)-I, and AVT-II, respectively. Further, the multi-location evaluation of KBC-12 (MC 17-2) with the check KBC-9 covering zones 5 and 6 of Karnataka reconfirmed the high-yielding potential and stability of KBC-12 across tested environments, as evident from AMMI and GGE biplots. Thus, the promising cowpea line KBC-12 was released for commercial cultivation in zones 5 and 6 in southern India during 2024 and can also be used as a donor (IC652010) of BLB and CpMV resistance. Our current study is one such examples that revealed the power of marker-assisted selection to deliver improved cultivars from lab to farmers' field.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01570-4.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"52"},"PeriodicalIF":2.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dongdan1331: a new high-yielding and widely-applicable maize variety with grain and silage dual-purpose. 东单1331:一种粮青贮两用的高产广适用玉米新品种。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-27 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01568-y
Bo Song, Yan Bai, Changcheng Xu, Yiming Li, Kun Zhang, Laikun Xia, Weibin Song, Jinsheng Lai, Haiming Zhao
{"title":"Dongdan1331: a new high-yielding and widely-applicable maize variety with grain and silage dual-purpose.","authors":"Bo Song, Yan Bai, Changcheng Xu, Yiming Li, Kun Zhang, Laikun Xia, Weibin Song, Jinsheng Lai, Haiming Zhao","doi":"10.1007/s11032-025-01568-y","DOIUrl":"10.1007/s11032-025-01568-y","url":null,"abstract":"","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"51"},"PeriodicalIF":2.6,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144182350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic insights into genome-wide heterozygosity and its impact on walnut adaptive evolution and improvement. 全基因组杂合性及其对核桃适应性进化和改良的影响。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-24 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01572-2
Mengjiao Chen, Xiaobo Song, Shuang Wu, Anjie Yu, Xin Wei, Jie Qiu, Dong Pei
{"title":"Genomic insights into genome-wide heterozygosity and its impact on walnut adaptive evolution and improvement.","authors":"Mengjiao Chen, Xiaobo Song, Shuang Wu, Anjie Yu, Xin Wei, Jie Qiu, Dong Pei","doi":"10.1007/s11032-025-01572-2","DOIUrl":"10.1007/s11032-025-01572-2","url":null,"abstract":"<p><p>Walnut (<i>Juglans regia</i> L.), an important woody oil plant, is cultivated globally and has a prominent position in the world's major nuts. Heterozygosity enriches plant genetic diversity by providing a wider array of gene combinations, significantly enhancing their adaptability to the environment and consequently improving their survival ability. In this study, we found that the heterozygosity rate was significantly correlated with 21 traits. Heterogeneity rate showed the strongest positive correlation with yield and nutrition, while it showed the most significant negative correlation with tree height and precocity. Among these, 13 traits showed positive correlations, the remaining 8 traits exhibited negative correlations. We conducted an in-depth study on the characteristics of walnut whole-genome heterozygosity. By using the GWAS based on the heterozygosity rate, we successfully identified 11 significant loci and 4 candidate genes. In the analysis of local heterozygosity rate by GWAS, it was found that 63.8% exhibited trans-acting and 36.2% exhibited cis-acting. In addition, with the help of genomic residual heterozygotes, we enriched functional genes from 44 Pfam families related to growth regulation and development. Finally, it is worth mentioning that during the process of walnut improvement, we observed an increase in the heterozygosity rate of genes related to the flowering time. It is speculated that a higher level of whole-genome heterozygosity can enhance the environmental adaptability of plants and improve their growth performance. The results of this study may provide assistance for optimizing the breeding strategies of walnuts.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01572-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"50"},"PeriodicalIF":2.6,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144174200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and physiological basis of heterosis in hybrid rice performance. 杂交稻性能杂种优势的分子生理基础。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-23 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01577-x
Nia Manlulu, Rogemae Ravela, Frodie Waing, Leonilo Gramaje
{"title":"Molecular and physiological basis of heterosis in hybrid rice performance.","authors":"Nia Manlulu, Rogemae Ravela, Frodie Waing, Leonilo Gramaje","doi":"10.1007/s11032-025-01577-x","DOIUrl":"10.1007/s11032-025-01577-x","url":null,"abstract":"<p><p>Heterosis is often exploited to produce high-yielding crops with better performance than their inbred counterparts. Commercial rice breeding has made use of this phenomenon as well, primarily through the use of cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS). However, a limited understanding of the molecular and physiological basis of heterosis prevents researchers from harnessing the full potential of hybrid breeding. This review examines the various explanations and mechanisms of heterosis in rice, including evidence fitting the established theories of heterosis and the use of modern omics approaches to characterizing heterosis and heterosis-related traits. Overdominance was the most frequently cited mechanism behind yield-related traits and various molecular and physiological markers associated with heterosis were identified.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"49"},"PeriodicalIF":2.6,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine mapping of PmL270, a new powdery mildew resistance gene on chromosome 7AL in wheat. 小麦抗白粉病新基因PmL270在7AL染色体上的精细定位。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-20 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01574-0
Qianyuan Zhang, Anli Gao, Wanying Sun, Jiale Wang, Qiulian Tang, Xiaobei Chen, Pengtao Ma, Shanying Zhu, Hongjie Li, Huagang He
{"title":"Fine mapping of <i>PmL270</i>, a new powdery mildew resistance gene on chromosome 7AL in wheat.","authors":"Qianyuan Zhang, Anli Gao, Wanying Sun, Jiale Wang, Qiulian Tang, Xiaobei Chen, Pengtao Ma, Shanying Zhu, Hongjie Li, Huagang He","doi":"10.1007/s11032-025-01574-0","DOIUrl":"10.1007/s11032-025-01574-0","url":null,"abstract":"<p><p>Wheat (<i>Triticum aestivum</i>) is one of the most important cereal crops, providing essential food and nutrition for humans. Wheat powdery mildew, caused by the biotrophic fungal pathogen <i>Blumeria graminis</i> f. sp. <i>tritici</i> (<i>Bgt</i>), seriously threatens wheat production by reducing yield and quality. Utilizing effective powdery mildew resistance (<i>Pm</i>) genes to develop resistant cultivars is a powerful means for controlling this disease. In this study, we identified a new resistance gene, <i>PmL270</i>, from the wheat line L270. By means of bulked segregant RNA‑Seq (BSR‑Seq) and molecular marker analysis, we fine-mapped <i>PmL270</i> to a 0.1-cM interval on chromosome 7AL, flanked by the markers <i>X7AL07</i> and <i>X7AL09</i>. This interval corresponds to a 630-kb region in the reference genome of Chinese Spring. Comparative analysis showed that <i>PmL270</i> is distinct from other <i>Pm</i> genes previously reported on the same chromosome arm. A co-dominant marker, <i>X7AL08</i>, developed from a candidate <i>NLR</i> gene, co-segregated with <i>PmL270</i> in the mapping population and showed high specificity for this gene. The mapping and development of co-segregation marker will facilitate the cloning of <i>PmL270</i> and contribute to its rapid utilization in wheat resistance breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01574-0.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"48"},"PeriodicalIF":2.6,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144128020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and validation of a novel tiller inhibition locus (tin7) on chromosome 2BL in wheat. 小麦2BL染色体上一个新的分蘖抑制位点tin7的鉴定与验证。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-01 DOI: 10.1007/s11032-025-01567-z
Shuai Hou, Yuzhou Mou, Haojie Li, Caixia Li, Zhiqiang Wang, Yu Lin, Yueyue Liu, Yaxi Liu
{"title":"Identification and validation of a novel tiller inhibition locus (<i>tin7</i>) on chromosome 2BL in wheat.","authors":"Shuai Hou, Yuzhou Mou, Haojie Li, Caixia Li, Zhiqiang Wang, Yu Lin, Yueyue Liu, Yaxi Liu","doi":"10.1007/s11032-025-01567-z","DOIUrl":"10.1007/s11032-025-01567-z","url":null,"abstract":"<p><p>Tiller number is a key determinant of the number of spikes per plant, significantly influencing yield. Here, we identify and characterize a novel tiller inhibition line, N2496. Using an F<sub>2</sub> segregating population derived from crossing N2496 and CN16, we mapped this locus. The F<sub>1</sub> line demonstrated a high number of tillers, while the F<sub>2</sub> population exhibited segregated ratios of 3:1 in tiller number. BSR-Seq analysis indicated that only one locus controls tiller number, located on chromosome 2B (Chr. 2B). This genetic analysis confirmed the presence of a single recessive locus controlling the tiller inhibition trait within this population. Subsequently, we constructed a genetic map on Chr. 2B using a wheat 55 K single nucleotide polymorphism array. By combining recombinant analysis with the genotype and phenotype of the F<sub>2-3</sub> family, we identified and named a major and novel locus, <i>tiller inhibition gene</i> (<i>tin7</i>), mapped within a 2.43 cM interval. The influence of <i>tin7</i> was verified across six different background populations all sharing N2496 as a common parent. Using new recombinant lines from these six populations, we further narrowed down the interval of <i>tin7</i> to a genetic interval of 2.08 cM. Analysis of thousand grain weight and grain-related traits suggests that by regulating tiller number, <i>tin7</i> holds the potential to increase yield in wheat. Our research provides access to a novel tiller number locus and available markers for regulating tiller number, which could be used in developing new cultivars with an optimal number of tillers.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01567-z.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 5","pages":"47"},"PeriodicalIF":2.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信