{"title":"Engineering the key domains of starch synthases and branching enzyme to balance the amylose increase and yield loss in maize kernels.","authors":"Zhengqi Wang, Shuting Hu, Junhong Zhuang, Xuan Zhang, Xingyu Ge, Sixuan Xu, Xiaoming Zhao, Huaijun Tang, Xiqing Wang, Jiansheng Li, Xiaohong Yang","doi":"10.1007/s11032-025-01559-z","DOIUrl":"10.1007/s11032-025-01559-z","url":null,"abstract":"<p><p>Amylose content and resistant starch (RS) are of great importance due to their multiple functionalities in the food and pharmaceutical industries and their benefits for human health. However, breeding high-amylose maize remains challenging because of the trade-off between amylose content and yield loss. Here, we report targeted mutagenesis of the key domains of starch synthases and branching enzyme including <i>SSIIa</i>, <i>SSIII</i> and <i>SBEIIb</i> via a CRISPR-Cas9 technology; this generated 15, 21, and 14 novel alleles, respectively, in the maize inbred line LH244. Except for <i>ssIII</i> mutants, the <i>ssIIa</i> and <i>sbeIIb</i> mutants had significantly greater apparent amylose content (AAC) and RS content compared with wild-type kernels. Although most mutants had reduced hundred-kernel weight (HKW) relative to wild-type plants, some mutants had only a small HKW reduction. Investigation of six representative mutants revealed that mutants of <i>ssIIa</i> and <i>sbeIIb</i> with higher AAC and RS content were accompanied with reduced starch content viscosity, increased content of reducing sugars and soluble sugars, and yet no apparent trade-off with agronomic traits. These findings offer a promising path for high-amylose maize breeding, accelerating the development of germplasms with enhanced RS content for the benefit of both global health and industry.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01559-z.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"37"},"PeriodicalIF":2.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Association analysis of response to take-all disease with agronomic traits and molecular markers and selection ideal genotypes in bread wheat (<i>Triticum aestivum</i> L.) genotypes.","authors":"Mozhgan Gholizadeh Vazvani, Hossein Dashti, Roohallah Saberi Riseh, Evelin Loit","doi":"10.1007/s11032-025-01554-4","DOIUrl":"10.1007/s11032-025-01554-4","url":null,"abstract":"<p><p>Take-all disease, caused by the fungal pathogen <i>Gaeumannomyces tritici</i>, severely impacts the growth and grain yield of wheat. Identifying loci associated with disease resistance can be achieved through molecular methods, along with data on morphological traits and disease severity. This study analyzed 100 bread wheat genotypes using molecular markers (SSR, IRAP technique, and translocation wheat-rye) and agronomical traits to pinpoint loci related to resistance to take-all disease. In this research, we propose a new approach using TOPSIS method for identifying ideal genotypes with resistance to take-all disease and the best in point of other agronomic traits. Genotypes were grouped based on agronomical traits (yield and its components) observed in the field, as well as root weight characteristics, root lignin content, and disease severity. These groupings effectively distinguished between resistant and sensitive genotypes. Stepwise regression techniques unveiled significant loci linked to disease resistance and agronomical traits. The presence of common loci suggests a potential pleiotropic nature of disease resistance. Molecular analysis exposed interactive loci contributing to trait variations and disease resistance, indicating gene-by-gene interactions. Using the IRAP technique, a locus from the LTR retrotransposon marker (LTR14) showed a strong correlation with take-all disease resistance and agronomic traits. This marker can serve as an informative and promising candidate for marker-assisted selection in wheat breeding programs. The TOPSIS method assisted in identifying genotypes showing high yield and resistance to take-all disease.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01554-4.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"36"},"PeriodicalIF":2.6,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-03-25eCollection Date: 2025-04-01DOI: 10.1007/s11032-025-01555-3
Kai Wang, Chenjian Fu, Xingxue Fu, Peng Qin, Xiaochun Hu, Xuanwen Zhang, Zhao Deng, Tianze Yan, Nan Jiang, Yanfeng Li, Jun Fu, Yiwen Deng, Yanbiao Zhou, Gui Xiao, Zuhua He, Yuanzhu Yang
{"title":"Enhancing the blast resistance of an elite thermo-sensitive genic male sterile line (TGMS) Longke638S and its derived hybrid varieties by incorporating <i>Pigm</i> gene.","authors":"Kai Wang, Chenjian Fu, Xingxue Fu, Peng Qin, Xiaochun Hu, Xuanwen Zhang, Zhao Deng, Tianze Yan, Nan Jiang, Yanfeng Li, Jun Fu, Yiwen Deng, Yanbiao Zhou, Gui Xiao, Zuhua He, Yuanzhu Yang","doi":"10.1007/s11032-025-01555-3","DOIUrl":"10.1007/s11032-025-01555-3","url":null,"abstract":"<p><p>Rice blast, caused by the fungal pathogen <i>Magnaporthe oryzae</i>, is one of the most destructive diseases of rice worldwide. The utilization of host resistance (<i>R</i>) genes in rice breeding program is considered as the most economical, effective, environment-friendly strategy for rice blast control. The <i>R</i> gene <i>Pigm</i>, shows high, broad-spectrum and durable resistance to rice blast. Here, we report the successful integration of <i>Pigm</i> into Longke638S (LK638S), an elite thermo-sensitive genic male sterile (TGMS) line in hybrid rice production in China. The integration significantly enhanced the blast resistance of LK638S and the derived hybrid varieties demonstrated exceptional performance in both yield and blast resistance. The improved line Longzhen36S (LZ36S), which recovered 91.84% of the recurrent parent genome. LZ36S exhibited a high blast resistance frequency of 96.4% against 28 blast isolates. Furthermore, the LZ36S-derived hybrids exhibited enhanced resistance to both seedling and panicle blast compared to LK638S-derived hybrids carrying the heterozygous <i>Pi2</i> gene, all without yield penalty. A total of ninety LK638S derived hybrid varieties have been state or provincial approved and certified with an annual promoting area exceed 964.0 thousand hectares. The LZ36S-derived hybrids can serve as improved versions with enhanced blast resistance, making them viable replacements for LK638S-derived hybrids in commercial production. Moreover, sixteen LZ36S-derived hybrid varieties, all possessing moderate (MR) or high (R) level blast resistance, along with excellent yield and grain quality, have been state or provincial approved and certificated. These LZ36S-derived hybrids show great potential for rapid commercialization, with promoting area of ~ 200 thousand hectares by 2023.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01555-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"35"},"PeriodicalIF":2.6,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143730522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-03-21eCollection Date: 2025-04-01DOI: 10.1007/s11032-025-01557-1
Luyao Yang, Jie Ren, Huanhuan Yang, Tao Zhou, Wencai Yang
{"title":"Presence of disease resistance genes in tomato germplasm revealed by gene-based or gene-linked molecular markers.","authors":"Luyao Yang, Jie Ren, Huanhuan Yang, Tao Zhou, Wencai Yang","doi":"10.1007/s11032-025-01557-1","DOIUrl":"10.1007/s11032-025-01557-1","url":null,"abstract":"<p><p>Tomato (<i>Solanum lycopersicum</i> L.) is a worldwide economically important vegetable crop, but the production is severely threatened by diseases and pests. Clarifying the presence of disease resistant genes in tomato germplasm is helpful for the development and deployment of resistant cultivars. In this study, 21 genes for resistance to 10 diseases were examined in a collection of 401 tomato accessions using gene-associated molecular markers. The results showed that the presence of the 21 genes in the 401 tomato accessions ranged from 0.2% to 66.1%. Frequencies (27.9-66.1%) of <i>I-1</i>, <i>I-2</i>, <i>Sm</i>, <i>Tm-2a</i>, and <i>Ph-3</i> genes were higher than other genes, while frequencies (0.2-1.2%) of <i>Ty-2</i>, <i>Ty-4</i>, <i>Mi-HT</i>, <i>I-3</i>, and <i>Tm-2</i> genes were very low. Based on the marker genotypes, 86.3% accessions carried at least one of disease resistance genes. Most (84.2%) Contemporary Processing F<sub>1</sub> (CPF) carried 4-8 genes and 74.1% Contemporary Fresh-market F<sub>1</sub> (CFF) carried 4-6 genes, while 87.4% Contemporary Processing Inbreds (CPI) carried 1-5 genes and 85.3% Contemporary Fresh-market Inbreds (CFI) carried 1-4 genes. Furthermore, the numbers of disease resistance genes were lower in Latin American Landrace (1-3), Vintage (1-3), and CFI (1-4) than in CFF (1-8), CPI (1-7), and CPF (2-10). Among multiple markers used for detection of the single gene, markers CAUTy4 and 18IY13 had the highest consistency (100%) of genotypes for the <i>Ty-4</i> gene, followed by SM-InDel and InDel-FT-29 (94.0%) for the <i>Sm</i> gene, while markers AW910upF2R3, 20IY10, and TG0302 for detecting the <i>Ty-2</i> gene had the lowest consistency (44.4%). Disease evaluation confirmed the accuracy of marker-assisted identification of corresponding genes except that the accessions carrying the <i>Ty-1</i> gene uniquely detected by the CAPS1 marker were susceptible to tomato yellow leaf curl virus. The data obtained here provide valuable information for marker-assisted selection of these disease resistance genes and the use of these germplasm in tomato breeding and production.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01557-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"34"},"PeriodicalIF":2.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-03-11eCollection Date: 2025-03-01DOI: 10.1007/s11032-025-01552-6
Daniel Mertten, Catherine M McKenzie, Susan Thomson, John McCallum, Dave Andersen, Samantha Baldwin, Michael Lenhard, Paul M Datson
{"title":"Using genomic selection to correct pedigree errors in kiwiberry breeding.","authors":"Daniel Mertten, Catherine M McKenzie, Susan Thomson, John McCallum, Dave Andersen, Samantha Baldwin, Michael Lenhard, Paul M Datson","doi":"10.1007/s11032-025-01552-6","DOIUrl":"10.1007/s11032-025-01552-6","url":null,"abstract":"<p><p>In breeding programmes, accurate estimation of breeding values is crucial for selecting superior genotypes. Traditional methods rely on phenotypic observations and pedigree information to estimate variance components and heritability. However, pedigree errors can significantly affect the accuracy of these estimates, especially in long-lived perennial vines. This study evaluates the effect of pedigree errors on breeding value predictions in kiwiberry breeding and explores the benefits of using genomic selection. We applied Best Linear Unbiased Prediction (BLUP) to estimate breeding values for each genotype for a given trait. Four scenarios with varying degrees of alteration in pedigree-based relationship matrices were used to represent inaccurate relationships between genotypes. Pedigree-based breeding values were compared with genomic estimated breeding values for one vine-related and four fruit-related quantitative traits. The results showed that as the degree of altered population structure increased, the prediction accuracy of pedigree-based breeding values decreased. In contrast, genomic selection, which uses marker inheritance, maintained realised relationships between genotypes, making it a more robust method for predicting genetic merit. In kiwiberries, as in all species of the genus <i>Actinidia</i>, only female vines bear fruit. The genotypic merit of fruit-related traits in male genotypes can only be estimated indirectly. Marker-based predictions outperformed pedigree-based predictions, especially for genotypes without phenotypic observations, such as male siblings. This study reviewed the induced population structures and introduced genomic selection into the kiwiberry breeding programme. We demonstrated that genomic selection provides more accurate breeding values by capturing true genetic relationships and reducing the effects of misidentified relationships between individuals.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01552-6.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"33"},"PeriodicalIF":2.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-03-07eCollection Date: 2025-03-01DOI: 10.1007/s11032-025-01553-5
Hiroshi Hisano, Hiroaki Sakai, Mika Hamaoka, Hiromi Munemori, Fumitaka Abe, Brigid Meints, Kazuhiro Sato, Patrick M Hayes
{"title":"Rapid development of naked malting barley germplasm through targeted mutagenesis.","authors":"Hiroshi Hisano, Hiroaki Sakai, Mika Hamaoka, Hiromi Munemori, Fumitaka Abe, Brigid Meints, Kazuhiro Sato, Patrick M Hayes","doi":"10.1007/s11032-025-01553-5","DOIUrl":"10.1007/s11032-025-01553-5","url":null,"abstract":"<p><p>Covered barley (<i>Hordeum vulgare</i>) has historically been preferred for malting, as the husk in this plant protects the embryo during harvest and acts as a filter during brewing. Naked barley, which is typically used as food, has the potential to be used in brewing due to recent technical advances, but the grains contain higher levels of β-glucan and polyphenols, which are undesirable in brewing. Introducing the naked trait into brewing cultivars through crossing is time-consuming due to the need to eliminate these undesirable traits. In this study, we rapidly developed naked barley that is potentially suitable for malting by introducing targeted mutations into <i>Nudum</i> (<i>NUD</i>) using CRISPR/Cas9-mediated targeted mutagenesis. The doubled haploid line 'DH120366', which was used as the parental line, was derived from a cross between two covered malting barley cultivars. We generated CRISPR/Cas9-mediated targeted mutagenized barley harboring mutations in <i>NUD</i> via <i>Agrobacterium tumefaciens</i>-mediated transformation and confirmed the presence of mosaic mutations in one individual from among 16 T<sub>0</sub> transformants. We sowed T<sub>1</sub> grains exhibiting the naked trait and sequenced the <i>NUD</i> gene in these T<sub>1</sub> seedlings, identifying two types of mutations. Shotgun high-throughput whole-genome sequencing confirmed the absence of the transgene in at least one <i>nud</i> mutant line following <i>k</i>-mer-based analysis. Cultivation in a closed growth chamber revealed no significant differences in agronomic traits between the <i>nud</i> mutants and the wild type. This study demonstrates the feasibility of rapidly developing naked barley with potential use for malting and brewing by targeting only <i>NUD</i> via targeted mutagenesis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01553-5.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"32"},"PeriodicalIF":2.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-03-07eCollection Date: 2025-03-01DOI: 10.1007/s11032-025-01550-8
Daniel Mertten, Catherine M McKenzie, Samantha Baldwin, Susan Thomson, Edwige J F Souleyre, Michael Lenhard, Paul M Datson
{"title":"Genomic selection in a kiwiberry breeding programme: integrating intra- and inter-specific crossing.","authors":"Daniel Mertten, Catherine M McKenzie, Samantha Baldwin, Susan Thomson, Edwige J F Souleyre, Michael Lenhard, Paul M Datson","doi":"10.1007/s11032-025-01550-8","DOIUrl":"10.1007/s11032-025-01550-8","url":null,"abstract":"<p><p>Inter-specific hybridisation between natural populations within the genus <i>Actinidia</i> is a common phenomenon and has been used in breeding programmes. Hybridisation between species increases the diversity of breeding populations, incorporating new desirable traits into potential cultivars. We explored genomic prediction in <i>Actinidia</i> breeding, focusing on the closely related species <i>Actinidia arguta</i> and <i>Actinidia melanandra</i>. We investigated the potential of genomic selection by analysing four quantitative traits across intra-specific <i>A. arguta</i> crosses and inter-specific crosses between <i>A. arguta</i> and <i>A. melanandra</i>. The continuous distributions of the studied traits in both intra-specific and inter-specific crosses indicated a polygenic background. A linear mixed model approach was used, incorporating the factor of year of season and a marker-based relationship matrix instead of pedigree as a random effect. After evaluation, the best model was applied to assess variance components and heritability for each quantitative trait. Expanding beyond intra-specific crosses, predictive ability was calculated to investigate inter-specific cross effect. Considering predictive ability, this study explored the impacts of sample size and population structure. A reduction in sample size correlated with decreased predictive ability, while the influence of population structure was particularly pronounced in inter-specific crosses. Finally, the prediction accuracy of genomic estimated breeding values, for parental genotypes, revealed an inter-species effect on prediction confidence. Considering the imbalance in genotype numbers between intra- and inter-specific cross populations, this research highlights the difficulty of genomic prediction in hybrid populations. Understanding prediction accuracy in inter-species crossing designs provides valuable insights for optimising genomic selection.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01550-8.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"31"},"PeriodicalIF":2.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>CsKIP1.7A</i>, a gene involved in fruit development, contributes to the yield heterosis formation of hybrid F<sub>1</sub> in cucumber.","authors":"Daoliang Yu, Shengping Zhang, Han Miao, Shaoyun Dong, Xiaoping Liu, Lixue Shi, Qing Xie, Weiping Wang, Shuang Wei, Xingfang Gu, Kailiang Bo","doi":"10.1007/s11032-025-01551-7","DOIUrl":"10.1007/s11032-025-01551-7","url":null,"abstract":"<p><p>Heterosis has been widely applied in crops production. Nonetheless, how to determine the favorable recombination of non-alleles remains elusive. Due to the uncertainty of genetic recombination, hybrids with strong heterosis tend to be selected empirically, by developing and testing a tremendous number of combinations. Here, we found some individuals in recombinant inbred lines (RILs, F<sub>9</sub>) that were generated from hybrid F<sub>1</sub> (HRF<sub>1</sub>) with heterosis performed transgressive segregation for yield in multiple environments. The result suggested that the formation of yield heterosis in hybrid was caused by the effective recombination of genes or QTLs. We performed multiple regression analysis (MRA) and redundancy analysis (RDA) using 11 traits measured in four environments. Of these traits, percentage of female flowers (PFF), fruit length (FL), fruit neck length (FNL), vine length (VL) and vine diameter (VD) contributed to increase yield. Moreover, the genes or QTL of yield contributor traits were identified by the molecular mapping strategy. We predicted a <i>fl7.1</i> candidate gene that encoding a KIP1-like protein through correlation analysis between haplotype and fruit length phenotype. Based on the phenomenon some RILs individuals performed transgressive segregation and genetic theory, we proposed the model that the genetic sources of heterosis are contributed by combination of heterozygotic advantages and genetic recombination effects. Our work provides the theoretical basis for the pyramid of contributor genes or QTL for yield heterosis. This work also may facilitate Marker-assisted Selection for promote hybrid pyramid breeding and makes yield increasing more predictable in cucumber.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01551-7.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"30"},"PeriodicalIF":2.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-02-24eCollection Date: 2025-03-01DOI: 10.1007/s11032-025-01547-3
Cassia da Silva Linge, Angelo Ciacciulli, Irina Baccichet, Remo Chiozzotto, Elisa Calastri, Alessandro Giulio Tagliabue, Laura Rossini, Daniele Bassi, Marco Cirilli
{"title":"A novel trait to reduce the mechanical damage of peach fruits at harvest: The first genetic dissection study for peduncle length.","authors":"Cassia da Silva Linge, Angelo Ciacciulli, Irina Baccichet, Remo Chiozzotto, Elisa Calastri, Alessandro Giulio Tagliabue, Laura Rossini, Daniele Bassi, Marco Cirilli","doi":"10.1007/s11032-025-01547-3","DOIUrl":"10.1007/s11032-025-01547-3","url":null,"abstract":"<p><p>In peach, a long peduncle can help minimize mechanical damages/physical injuries in the fruit at harvest and can also be useful in postharvest handling and transportation. In view of genetically dissecting the peduncle length (PL) in peach, we have performed a Quantitative Trait Locus (QTL) mapping study for PL using a F<sub>2</sub> progeny of 117 individuals from the cross 'PI 91459 [NJ Weeping]' x 'Bounty' (WxBy). The progeny was phenotyped for three years (2011, 2012 and 2014) and the QTL mapping analysis was performed using four methods: Kruskall-Wallis, Interval Mapping, Multiple QTL Mapping and Genome-Wide Composite Interval Mapping. QTL analysis led to the identification of 9 QTLs distributed on linkage groups (LG) 1, 2, 4, 5, 6 and 7. A stable QTL was identified on LG6 (22,978,897 to 24,666,094 bp) and explained up to 63% of the phenotypic variance. Within the genetic interval of the stable QTL on LG6 potential candidate genes with functional annotation encompassing cellular expansion, hormone regulation, transcriptional regulation, developmental processes such as meristem development, and responses to environmental cues were found. The results reported in this study represent the first insight into the genetic basis of PL and a step forward towards the introduction of novel traits in peach commercial breeding in order to minimize the problems related to mechanical damage/injuries to peach fruits that commonly might occur during at harvest and post-harvest processes.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01547-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"29"},"PeriodicalIF":2.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-02-24eCollection Date: 2025-03-01DOI: 10.1007/s11032-025-01549-1
Mang Zhu, Hantao Song, Jingwen Xu, Xiaohui Jiang, Yan Zhang, Jun Ma, Min Jiang, Yancong Li, Zhijian Xie, Tingting Liu, Guobin Chen, Mingliang Xu
{"title":"Introgression of <i>ZmCPK39</i> in maize hybrids enhances resistance to gray leaf spot disease without compromising yield.","authors":"Mang Zhu, Hantao Song, Jingwen Xu, Xiaohui Jiang, Yan Zhang, Jun Ma, Min Jiang, Yancong Li, Zhijian Xie, Tingting Liu, Guobin Chen, Mingliang Xu","doi":"10.1007/s11032-025-01549-1","DOIUrl":"10.1007/s11032-025-01549-1","url":null,"abstract":"<p><p>Gray leaf spot (GLS) is one of the most damaging foliar diseases in maize. In previous research, we identified the <i>ZmCPK39</i> gene, which confers resistance to GLS. This study demonstrates the utility of <i>ZmCPK39</i> in breeding resistant maize varieties. Two parental lines of Zhengdan958 (the most widely cultivated hybrid in China), Chang7-2 and Zheng58, were selected for resistance improvement. These lines were crossed with Y32, a donor line high resistance to GLS, followed by six rounds of backcrossing to their respective recurrent parents. Foreground selection was performed in each generation to detect <i>ZmCPK39</i>, while background selection was conducted in the BC<sub>6</sub>F<sub>1</sub> generations using a Maize 6 K DNA chip. The converted lines, Chang7-2 <sup><i>ZmCPK39</i></sup> and Zheng58 <sup><i>ZmCPK39</i></sup> , with a recovery rate of 94.67-96.48%, were crossed to produce the improved hybrid Zhengdan958 <sup><i>ZmCPK39</i></sup> . This hybrid exhibited enhanced GLS resistance and an 11.95% higher yield under severe disease stress, while maintaining comparable yield performance under normal growth conditions relative to the original Zhengdan958. This study highlights the breeding potential of <i>ZmCPK39</i> for improving GLS resistance in maize.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01549-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 3","pages":"28"},"PeriodicalIF":2.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}