基于图像的GWAS鉴定了大豆突变群体中种子相关性状的遗传结构。

IF 3 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-08-11 eCollection Date: 2025-08-01 DOI:10.1007/s11032-025-01584-y
Jung Min Kim, Jeong Woo Lee, Dae June Kim, Jae Il Lyu, JeongHo Baek, Bo-Keun Ha, Soon-Jae Kwon
{"title":"基于图像的GWAS鉴定了大豆突变群体中种子相关性状的遗传结构。","authors":"Jung Min Kim, Jeong Woo Lee, Dae June Kim, Jae Il Lyu, JeongHo Baek, Bo-Keun Ha, Soon-Jae Kwon","doi":"10.1007/s11032-025-01584-y","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean [<i>Glycine max</i> (L.) Merr.] seed morphology markedly influences yield, productivity, and nutritional value. However, assessing quantitative traits remains challenging due to their complexity and strong genotype-by-environment interactions. In this study, a high-throughput phenotyping (HTP) system was used to evaluate 13 image-based traits and a hundred-seed weight in a soybean mutant diversity pool (MDP) comprising 192 genotypes. All traits exhibited significant variations within the mutant diversity pool across multiple environments. Correlation analysis revealed strong positive and negative correlations among the traits regarding seed size, shape, color, and weight. Genome-wide association studies (GWAS) were conducted using 37,249 single nucleotide polymorphisms (SNPs) generated through genotype-by-sequencing (GBS) to uncover the genetic architecture of seed-related traits. The image-based GWAS identified 79 significant quantitative trait nucleotides (QTNs) that were simultaneously detected under all environments. Notably, five novel pleiotropic QTNs were consistently mapped to chromosomes 7, 10, 15, 18, and 20, each associated with a specific candidate gene. These genes exhibited marked expression differences during the seed developmental stages between the wild-type cultivar and its mutant. The HTP-integrated GBS demonstrates a powerful approach for precise trait dissection and genomic selection. These findings provide critical insights into the genetic architecture underlying desirable seed morphology and offer valuable tools for advancing precision soybean breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01584-y.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 8","pages":"67"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Image-based GWAS identifies the genetic architecture of seed-related traits in a soybean mutant population.\",\"authors\":\"Jung Min Kim, Jeong Woo Lee, Dae June Kim, Jae Il Lyu, JeongHo Baek, Bo-Keun Ha, Soon-Jae Kwon\",\"doi\":\"10.1007/s11032-025-01584-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean [<i>Glycine max</i> (L.) Merr.] seed morphology markedly influences yield, productivity, and nutritional value. However, assessing quantitative traits remains challenging due to their complexity and strong genotype-by-environment interactions. In this study, a high-throughput phenotyping (HTP) system was used to evaluate 13 image-based traits and a hundred-seed weight in a soybean mutant diversity pool (MDP) comprising 192 genotypes. All traits exhibited significant variations within the mutant diversity pool across multiple environments. Correlation analysis revealed strong positive and negative correlations among the traits regarding seed size, shape, color, and weight. Genome-wide association studies (GWAS) were conducted using 37,249 single nucleotide polymorphisms (SNPs) generated through genotype-by-sequencing (GBS) to uncover the genetic architecture of seed-related traits. The image-based GWAS identified 79 significant quantitative trait nucleotides (QTNs) that were simultaneously detected under all environments. Notably, five novel pleiotropic QTNs were consistently mapped to chromosomes 7, 10, 15, 18, and 20, each associated with a specific candidate gene. These genes exhibited marked expression differences during the seed developmental stages between the wild-type cultivar and its mutant. The HTP-integrated GBS demonstrates a powerful approach for precise trait dissection and genomic selection. These findings provide critical insights into the genetic architecture underlying desirable seed morphology and offer valuable tools for advancing precision soybean breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01584-y.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 8\",\"pages\":\"67\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01584-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01584-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

大豆[甘氨酸max (L.)]稳定。种子形态显著影响产量、生产力和营养价值。然而,由于数量性状的复杂性和强烈的基因型与环境的相互作用,评估数量性状仍然具有挑战性。本研究利用高通量表型(HTP)系统对一个包含192个基因型的大豆突变体多样性库(MDP)中的13个图像性状和百粒重进行了评价。所有性状在不同环境下的突变体多样性池中均表现出显著差异。相关分析表明,种子大小、形状、颜色、重量等性状之间存在显著的正相关和负相关关系。利用基因型测序(GBS)产生的37249个单核苷酸多态性(snp)进行全基因组关联研究(GWAS),以揭示种子相关性状的遗传结构。基于图像的GWAS鉴定出79个在所有环境下同时检测到的显著数量性状核苷酸(QTNs)。值得注意的是,5个新的多效性qtn一致定位于染色体7、10、15、18和20,每个qtn都与一个特定的候选基因相关。这些基因在野生型品种和突变型品种的种子发育阶段表现出明显的表达差异。整合htp的GBS为精确的性状解剖和基因组选择提供了强有力的方法。这些发现为了解理想种子形态的遗传结构提供了重要的见解,并为推进大豆的精确育种提供了有价值的工具。补充资料:在线版本提供补充资料,网址为10.1007/s11032-025-01584-y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-based GWAS identifies the genetic architecture of seed-related traits in a soybean mutant population.

Soybean [Glycine max (L.) Merr.] seed morphology markedly influences yield, productivity, and nutritional value. However, assessing quantitative traits remains challenging due to their complexity and strong genotype-by-environment interactions. In this study, a high-throughput phenotyping (HTP) system was used to evaluate 13 image-based traits and a hundred-seed weight in a soybean mutant diversity pool (MDP) comprising 192 genotypes. All traits exhibited significant variations within the mutant diversity pool across multiple environments. Correlation analysis revealed strong positive and negative correlations among the traits regarding seed size, shape, color, and weight. Genome-wide association studies (GWAS) were conducted using 37,249 single nucleotide polymorphisms (SNPs) generated through genotype-by-sequencing (GBS) to uncover the genetic architecture of seed-related traits. The image-based GWAS identified 79 significant quantitative trait nucleotides (QTNs) that were simultaneously detected under all environments. Notably, five novel pleiotropic QTNs were consistently mapped to chromosomes 7, 10, 15, 18, and 20, each associated with a specific candidate gene. These genes exhibited marked expression differences during the seed developmental stages between the wild-type cultivar and its mutant. The HTP-integrated GBS demonstrates a powerful approach for precise trait dissection and genomic selection. These findings provide critical insights into the genetic architecture underlying desirable seed morphology and offer valuable tools for advancing precision soybean breeding.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01584-y.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信