Jung Min Kim, Jeong Woo Lee, Dae June Kim, Jae Il Lyu, JeongHo Baek, Bo-Keun Ha, Soon-Jae Kwon
{"title":"基于图像的GWAS鉴定了大豆突变群体中种子相关性状的遗传结构。","authors":"Jung Min Kim, Jeong Woo Lee, Dae June Kim, Jae Il Lyu, JeongHo Baek, Bo-Keun Ha, Soon-Jae Kwon","doi":"10.1007/s11032-025-01584-y","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean [<i>Glycine max</i> (L.) Merr.] seed morphology markedly influences yield, productivity, and nutritional value. However, assessing quantitative traits remains challenging due to their complexity and strong genotype-by-environment interactions. In this study, a high-throughput phenotyping (HTP) system was used to evaluate 13 image-based traits and a hundred-seed weight in a soybean mutant diversity pool (MDP) comprising 192 genotypes. All traits exhibited significant variations within the mutant diversity pool across multiple environments. Correlation analysis revealed strong positive and negative correlations among the traits regarding seed size, shape, color, and weight. Genome-wide association studies (GWAS) were conducted using 37,249 single nucleotide polymorphisms (SNPs) generated through genotype-by-sequencing (GBS) to uncover the genetic architecture of seed-related traits. The image-based GWAS identified 79 significant quantitative trait nucleotides (QTNs) that were simultaneously detected under all environments. Notably, five novel pleiotropic QTNs were consistently mapped to chromosomes 7, 10, 15, 18, and 20, each associated with a specific candidate gene. These genes exhibited marked expression differences during the seed developmental stages between the wild-type cultivar and its mutant. The HTP-integrated GBS demonstrates a powerful approach for precise trait dissection and genomic selection. These findings provide critical insights into the genetic architecture underlying desirable seed morphology and offer valuable tools for advancing precision soybean breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01584-y.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 8","pages":"67"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Image-based GWAS identifies the genetic architecture of seed-related traits in a soybean mutant population.\",\"authors\":\"Jung Min Kim, Jeong Woo Lee, Dae June Kim, Jae Il Lyu, JeongHo Baek, Bo-Keun Ha, Soon-Jae Kwon\",\"doi\":\"10.1007/s11032-025-01584-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean [<i>Glycine max</i> (L.) Merr.] seed morphology markedly influences yield, productivity, and nutritional value. However, assessing quantitative traits remains challenging due to their complexity and strong genotype-by-environment interactions. In this study, a high-throughput phenotyping (HTP) system was used to evaluate 13 image-based traits and a hundred-seed weight in a soybean mutant diversity pool (MDP) comprising 192 genotypes. All traits exhibited significant variations within the mutant diversity pool across multiple environments. Correlation analysis revealed strong positive and negative correlations among the traits regarding seed size, shape, color, and weight. Genome-wide association studies (GWAS) were conducted using 37,249 single nucleotide polymorphisms (SNPs) generated through genotype-by-sequencing (GBS) to uncover the genetic architecture of seed-related traits. The image-based GWAS identified 79 significant quantitative trait nucleotides (QTNs) that were simultaneously detected under all environments. Notably, five novel pleiotropic QTNs were consistently mapped to chromosomes 7, 10, 15, 18, and 20, each associated with a specific candidate gene. These genes exhibited marked expression differences during the seed developmental stages between the wild-type cultivar and its mutant. The HTP-integrated GBS demonstrates a powerful approach for precise trait dissection and genomic selection. These findings provide critical insights into the genetic architecture underlying desirable seed morphology and offer valuable tools for advancing precision soybean breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01584-y.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 8\",\"pages\":\"67\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01584-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01584-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Image-based GWAS identifies the genetic architecture of seed-related traits in a soybean mutant population.
Soybean [Glycine max (L.) Merr.] seed morphology markedly influences yield, productivity, and nutritional value. However, assessing quantitative traits remains challenging due to their complexity and strong genotype-by-environment interactions. In this study, a high-throughput phenotyping (HTP) system was used to evaluate 13 image-based traits and a hundred-seed weight in a soybean mutant diversity pool (MDP) comprising 192 genotypes. All traits exhibited significant variations within the mutant diversity pool across multiple environments. Correlation analysis revealed strong positive and negative correlations among the traits regarding seed size, shape, color, and weight. Genome-wide association studies (GWAS) were conducted using 37,249 single nucleotide polymorphisms (SNPs) generated through genotype-by-sequencing (GBS) to uncover the genetic architecture of seed-related traits. The image-based GWAS identified 79 significant quantitative trait nucleotides (QTNs) that were simultaneously detected under all environments. Notably, five novel pleiotropic QTNs were consistently mapped to chromosomes 7, 10, 15, 18, and 20, each associated with a specific candidate gene. These genes exhibited marked expression differences during the seed developmental stages between the wild-type cultivar and its mutant. The HTP-integrated GBS demonstrates a powerful approach for precise trait dissection and genomic selection. These findings provide critical insights into the genetic architecture underlying desirable seed morphology and offer valuable tools for advancing precision soybean breeding.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01584-y.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.