Molecular Breeding最新文献

筛选
英文 中文
Development of SNP panel for genetic diversity assessment, fingerprinting identification and backcross breeding in Brassica oleracea. 甘蓝遗传多样性评估、指纹鉴定及回交育种SNP面板的建立。
IF 3 3区 农林科学
Molecular Breeding Pub Date : 2025-07-26 eCollection Date: 2025-08-01 DOI: 10.1007/s11032-025-01586-w
Xueqin Yao, Feng Hong, Guangqing Li, Lei Huang, Chunqing Liu, Jing Gong, Bo Wang, Juanjuan Li, Kede Liu, Zhujie Xie
{"title":"Development of SNP panel for genetic diversity assessment, fingerprinting identification and backcross breeding in <i>Brassica oleracea</i>.","authors":"Xueqin Yao, Feng Hong, Guangqing Li, Lei Huang, Chunqing Liu, Jing Gong, Bo Wang, Juanjuan Li, Kede Liu, Zhujie Xie","doi":"10.1007/s11032-025-01586-w","DOIUrl":"10.1007/s11032-025-01586-w","url":null,"abstract":"<p><p>Broccoli (<i>Brassica oleracea</i> L. var. <i>italica</i>) is a globally important vegetable due to its rich nutrients as well as its anti-cancer effect. China is the world's largest producer and exporter of broccoli. However, since the research on commercial breeding of broccoli in China started relatively late, the level of genetic breeding in our country lags behind with more than 80% seeds imported. To assist broccoli breeding with molecular markers, we re-sequenced 41 representative broccoli inbred lines at high coverage depth and identified a total of 1,348,968 SNPs. From these SNPs, a genotyping-in-thousand by sequencing (GT-seq) SNP panel composed of 700 evenly distributed high-quality SNPs was developed. We assessed the genetic diversity, population structure, and kinship of 114 <i>B. oleracea</i> varieties bred in different institutions including broccolis, cabbages, cauliflowers and kales with this SNP panel, and found that the genetic diversity of these varieties was somewhat limited, with an average heterozygosity of 18.35% and an average Polymorphic Information Content (PIC) of 0.26. Population structure analysis divided the varieties into two main groups, consistent with the origin from two independent domestication events. The SNP panel was also employed to screen individuals with high background recovery rates in backcross breeding. Furthermore, the SNP panel was used to test seed purity of parental inbred lines and F1 hybrids, which could expedite the entry of hybrid seeds into the market. Overall, the developed GT-seq SNP panel is a valuable tool for various aspects of <i>B. oleracea</i> breeding and genetics studies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01586-w.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 8","pages":"64"},"PeriodicalIF":3.0,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144732337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of QTLs for adult-plant stripe rust resistance in Chinese wheat landrace Yizhanghongkemai and assessment of their utility for decreasing yield loss. 中国小麦地方品种“一章红可麦”成株抗条锈病qtl的鉴定及其对减少产量损失的利用评价
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-07-14 eCollection Date: 2025-07-01 DOI: 10.1007/s11032-025-01583-z
Yumei Li, Jiaru Yang, Jing Zhang, Shuanglin Du, Hongli Ji, Zehou Liu, Hao Tang, Peixun Liu, Qin Wang, Haiqin Zhang, Wuyun Yang, Jun Li, Hongshen Wan
{"title":"Identification of QTLs for adult-plant stripe rust resistance in Chinese wheat landrace Yizhanghongkemai and assessment of their utility for decreasing yield loss.","authors":"Yumei Li, Jiaru Yang, Jing Zhang, Shuanglin Du, Hongli Ji, Zehou Liu, Hao Tang, Peixun Liu, Qin Wang, Haiqin Zhang, Wuyun Yang, Jun Li, Hongshen Wan","doi":"10.1007/s11032-025-01583-z","DOIUrl":"https://doi.org/10.1007/s11032-025-01583-z","url":null,"abstract":"<p><p>Stripe rust is prevalent in the wheat-growing region of southwestern China. Frequent changes in stripe rust pathogen virulence in this region lead to a rapid loss of disease resistance among wheat varieties. However, Chinese wheat landrace Yizhanghongkemai (YZHK) has exhibited adult-plant stripe rust resistance for more than one decade in a disease nursery in southwestern China. To elucidate the underlying genetic basis, quantitative trait loci (QTLs) for adult-plant stripe rust resistance in YZHK were analyzed using an inclusive composite interval mapping method. Six QTLs for adult-plant stripe rust resistance were detected on chromosomes 1BL, 2BL, 3DS, 5BL, 5DL, and 7DS in multiple environments. Notably, <i>QYrYZHK.saas-1B</i>, <i>QYrYZHK.saas-2B</i> and <i>QYrCY.saas-5D</i> were likely new disease resistance loci. By comparing the effects of QTL alleles on yield and its related components in field trials in which stripe rust was severe and effectively controlled, we determined that three QTLs significantly decreased yield losses due to stripe rust, among which the QTLs on chromosomes 1BL and 7DS were from YZHK, whereas the QTL on chromosome 5DL was from the other parent Chuanyu 12. These QTLs represent elite genetic resources for developing wheat varieties with adult-plant stripe rust resistance in the wheat-growing region of southwestern China.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01583-z.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"61"},"PeriodicalIF":2.6,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144649900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic analysis of trade-offs among disease resistance, yield, and quality traits employing genome-wide association mapping in indica rice (Oryza sativa L.). 利用全基因组关联图谱分析籼稻(Oryza sativa L.)抗病、产量和品质性状的权衡。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-07-10 eCollection Date: 2025-07-01 DOI: 10.1007/s11032-025-01578-w
Vinodkumar Naik Moode, Madhusudhan Puchakayala, Srividya K Gannavarapu, Madhavilatha Kommana, Lalam Krishna, Sivarama Lekkala, Navajeet Chakravartty, VBReddy Lachagari, Shaik Nafeez Umar, Srividhya Akkareddy, Issa Keerthi, Sreelakshmi Chintala, Nirmalkumar R Amjikarai, Lakshminarayana R Vemireddy
{"title":"Genetic analysis of trade-offs among disease resistance, yield, and quality traits employing genome-wide association mapping in indica rice (<i>Oryza sativa</i> L.).","authors":"Vinodkumar Naik Moode, Madhusudhan Puchakayala, Srividya K Gannavarapu, Madhavilatha Kommana, Lalam Krishna, Sivarama Lekkala, Navajeet Chakravartty, VBReddy Lachagari, Shaik Nafeez Umar, Srividhya Akkareddy, Issa Keerthi, Sreelakshmi Chintala, Nirmalkumar R Amjikarai, Lakshminarayana R Vemireddy","doi":"10.1007/s11032-025-01578-w","DOIUrl":"https://doi.org/10.1007/s11032-025-01578-w","url":null,"abstract":"<p><p>The genetic trade-offs among complex traits are often witnessed in rice, however, very little is known about the contributing genes and mechanisms to exploit in breeding programmes. Here, we aimed to understand the genetic trade-offs among disease resistance, quality, and yield traits employing genome-wide association mapping. In all, 78 common marker-trait associations (MTAs) were identified for the targeted traits. In addition, five pleiotropic MTAs, 17 tightly linked MTAs, and two pleiotropic and tightly linked MTAs were detected for various trait combinations. The majority of MTA clusters were observed for quality traits (15 clusters) followed by the combined yield and quality traits (5 clusters) while only one cluster was found for combined yield and disease resistance traits. Further, the prediction of candidate genes controlling MTA clusters by exploiting the publicly available rice genome databases, revealed D-type cyclin 3;1 and Xyloglucan endotransglucosylase were found to be responsible for controlling grain size traits. We found no significant large linkage drag blocks with major MTAs for the targeted traits indicating that the indica rice genotypes have fewer trade-offs compared to japonica. The current study provides deeper insights into the genetic trade-offs among complex traits in rice, aiding in the meticulous planning of future breeding strategies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01578-w.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"60"},"PeriodicalIF":2.6,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and fine-mapping of qNCLB3.04 resistant to Northern Corn Leaf Blight. 玉米叶枯病抗性qNCLB3.04的鉴定与精细定位
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-07-09 eCollection Date: 2025-07-01 DOI: 10.1007/s11032-025-01581-1
Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai
{"title":"Identification and fine-mapping of <i>qNCLB3.04</i> resistant to Northern Corn Leaf Blight.","authors":"Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai","doi":"10.1007/s11032-025-01581-1","DOIUrl":"https://doi.org/10.1007/s11032-025-01581-1","url":null,"abstract":"<p><p>Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen <i>Setosphaeria turcica</i>, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC<sub>1</sub>F<sub>1</sub> population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six <i>S. turcica</i> races. Through five field trials, five resistance QTLs against NCLB were identified in this BC<sub>1</sub>F<sub>1</sub> population. One of them, <i>qNCLB3.04</i> on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the <i>qNCLB3.04</i> locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, <i>qNCLB3.04</i> holds significant potential for improving maize broad-spectrum resistance against NCLB.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01581-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"59"},"PeriodicalIF":2.6,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering saline-alkali-tolerant apple rootstocks by overexpressing MdHYL1 in M9-T337. M9-T337过表达MdHYL1基因改造耐盐碱苹果砧木
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-06-25 eCollection Date: 2025-07-01 DOI: 10.1007/s11032-025-01579-9
Tianle Fan, Shufan Song, Ningning Bian, Fang Zhi, Fengwang Ma, Qingmei Guan, Xuewei Li
{"title":"Engineering saline-alkali-tolerant apple rootstocks by overexpressing <i>MdHYL1</i> in M9-T337.","authors":"Tianle Fan, Shufan Song, Ningning Bian, Fang Zhi, Fengwang Ma, Qingmei Guan, Xuewei Li","doi":"10.1007/s11032-025-01579-9","DOIUrl":"10.1007/s11032-025-01579-9","url":null,"abstract":"<p><p>Apple trees are frequently subjected to varying degrees of salt stress. HYL1, a key protein involved in miRNA biosynthesis, has been shown to play critical roles in plant responses to cold, drought, and pathogen infection. However, the specific function of MdHYL1 in mediating salt-alkali stress tolerance in apple remains unknown. In this study, we demonstrated that overexpression of <i>MdHYL1</i> in M9-T337 rootstocks significantly enhanced salt-alkali stress tolerance, including improved growth performance, reduced Na⁺/K⁺ ratio, decreased membrane damage, enhanced photosynthetic, and antioxidant capacity, which significantly impairs their growth, fruit quality, and yield. Moreover, scions grafted onto <i>MdHYL1</i> OE rootstocks displayed superior saline-alkali stress tolerance compared to those grafted onto M9-T337 rootstocks. Taken together, our findings highlight <i>MdHYL1</i> as a promising candidate gene for improving saline-alkali stress tolerance in fruit trees through biotechnological approaches.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01579-9.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"58"},"PeriodicalIF":2.6,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel candidate gene associated with early heading on chromosome 5B in wheat mutant jg1489. 小麦突变体jg1489 5B染色体早抽穗相关新候选基因的鉴定
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-06-18 eCollection Date: 2025-07-01 DOI: 10.1007/s11032-025-01580-2
Qingxia Chang, Hongchun Xiong, Huijun Guo, Yongdun Xie, Linshu Zhao, Jiayu Gu, Huiyuan Li, Shirong Zhao, Yuping Ding, Yumei Zhang, Luxiang Liu
{"title":"Identification of novel candidate gene associated with early heading on chromosome 5B in wheat mutant <i>jg1489</i>.","authors":"Qingxia Chang, Hongchun Xiong, Huijun Guo, Yongdun Xie, Linshu Zhao, Jiayu Gu, Huiyuan Li, Shirong Zhao, Yuping Ding, Yumei Zhang, Luxiang Liu","doi":"10.1007/s11032-025-01580-2","DOIUrl":"10.1007/s11032-025-01580-2","url":null,"abstract":"<p><p>Heading date (HD) is a critical agronomic trait that influences wheat's adaptation to environmental conditions and plays a pivotal role in yield stability. In this study, an early-heading mutant <i>jg1489</i> was identified following γ-ray irradiation of the wild type (WT) wheat variety Jing411. This mutant headed 2-3 days earlier than the WT, with no significant differences in other yield-related traits. Bulked Segregant Analysis (BSA), genetic linkage analysis of the F<sub>2</sub> population from a cross between the WT and mutant, and phenotypic validation in F<sub>2:3</sub> lines were used to finely map the HD gene to a 12.4-Mb region on chromosome 5B. Transcriptome analysis of developing spikes from both WT and <i>jg1489</i> at three key developmental stages revealed that differentially expressed genes (DEGs) were significantly enriched in pathways related to photosynthesis and photosynthesis-antenna proteins, suggesting a potential role in photosynthetic regulation. Within the mapped region, six high-probability candidate genes were identified based on sequence variation and expression patterns. Functional annotation, supported by studies of homologs in other species, highlighted three genes encoding serine proteases, bromodomain-containing protein, and UTP-glucose-1-phosphate uridylyltransferase as the most likely regulators of HD. These findings provide valuable insights into the genetic regulation of HD in wheat and support the development of new wheat varieties with optimized heading times.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01580-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"57"},"PeriodicalIF":2.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144476057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonoid compounds as a way to identify sources of carrot resistance to Alternaria leaf blight. 黄酮类化合物作为胡萝卜抗叶枯病来源的鉴定方法。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-06-14 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01573-1
Marie Louisa Ramaroson, Claude Emmanuel Koutouan, Angelina El Ghaziri, Raymonde Baltenweck, Patricia Claudel, Philippe Hugueney, Sébastien Huet, Anita Suel, Linda Voisine, Mathilde Briard, Jean Jacques Helesbeux, Latifa Hamama, Valérie Le Clerc, Emmanuel Geoffriau
{"title":"Flavonoid compounds as a way to identify sources of carrot resistance to Alternaria leaf blight.","authors":"Marie Louisa Ramaroson, Claude Emmanuel Koutouan, Angelina El Ghaziri, Raymonde Baltenweck, Patricia Claudel, Philippe Hugueney, Sébastien Huet, Anita Suel, Linda Voisine, Mathilde Briard, Jean Jacques Helesbeux, Latifa Hamama, Valérie Le Clerc, Emmanuel Geoffriau","doi":"10.1007/s11032-025-01573-1","DOIUrl":"10.1007/s11032-025-01573-1","url":null,"abstract":"<p><p>Breeding varieties that are highly resistant to Alternaria leaf blight is crucial to enable carrot growers to drastically reduce their use of synthetic fungicides. Some sources of resistance have been identified in recent years, but in limited number and the genetic control as well as the screening for resistance remain complex and tedious. Flavonoid compounds have been reported to be involved in plant resistance to biotic or abiotic stresses. Their level of variation could therefore be a way of assisting screening activities for resistance. The aim of the study is to validate this link throughout the carrot growth cycle, in various environments and across a wide genetic diversity. A kinetic study showed that three flavonoid compounds are differentially accumulated between resistant and susceptible accessions as early as the 2-leaf stage and all along the plant development. Moreover, this differential is maintained throughout the potential infectious process in different environments. The analysis of a large range of accessions representing a very wide diversity of geographical origins, genetic structures, breeders and varietal types validates the link between resistance and the content in flavonoid compounds. These results open up extremely interesting prospects for the development of a marker-assisted early selection tool that would facilitate the screening and introgression of resistances into elite material, a complex task due to the polygenic control of resistance and biennial nature of the crop.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01573-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"55"},"PeriodicalIF":2.6,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144302517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural variation in the GH1 promoter regulates the hull color of rice. GH1启动子的结构变异调控稻壳颜色。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-29 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01569-x
Chengxing Du, Hao Wang, Guangrong Zhong, Xilan Yan, Kehan Di, Longkang Li, Senhai Zhang, Nangu Yang, Yangkai Wang, Weilan Chen, Hua Yuan, Bin Tu, Jiawei Xiong, Zhaohui Zhong, Yuping Wang, Shigui Li, Peng Qin, Bingtian Ma
{"title":"Structural variation in the <i>GH1</i> promoter regulates the hull color of rice.","authors":"Chengxing Du, Hao Wang, Guangrong Zhong, Xilan Yan, Kehan Di, Longkang Li, Senhai Zhang, Nangu Yang, Yangkai Wang, Weilan Chen, Hua Yuan, Bin Tu, Jiawei Xiong, Zhaohui Zhong, Yuping Wang, Shigui Li, Peng Qin, Bingtian Ma","doi":"10.1007/s11032-025-01569-x","DOIUrl":"10.1007/s11032-025-01569-x","url":null,"abstract":"<p><p>Rice hull color (HC) is crucial for improving the mechanization efficiency of hybrid rice seed production. However, the genetic resources for hull color currently available for practical production are limited, highlighting an urgent need to explore natural variations that can be utilized in breeding. In this study, we conducted a genome-wide association study (GWAS) on the hull color of 301 rice germplasm resources and identified a significant quantitative trait locus (QTL) <i>qHC3.2</i> on chromosome 3. In this QTL, we identified a 7.3 kb natural structural variation (SV) in the <i>Golden Hull 1</i> (<i>GH1)</i> promoter region, which suppresses the expression of <i>GH1</i> and leads to the golden hull phenotype. We have screened seven germplasm resources that contain this natural variation. By introducing <i>GH1</i>™ into U1S, the hull color of U1S™ remains stable and is unaffected by drying time, demonstrating its potential value for breeding applications. Our study provides valuable natural variations and germplasm resources for the mechanized production of hybrid rice.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01569-x.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"53"},"PeriodicalIF":2.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a semi-dwarf dominant genic male sterile wheat with seed red fluorescence as a visible marker. 以种子红色荧光为可见标记的半矮秆显性基因不育小麦的选育。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-29 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01571-3
Ke Zheng, Xiaonan Zhou, Ningyao Xu, Demei Liu, Haiqing Wang
{"title":"Development of a semi-dwarf dominant genic male sterile wheat with seed red fluorescence as a visible marker.","authors":"Ke Zheng, Xiaonan Zhou, Ningyao Xu, Demei Liu, Haiqing Wang","doi":"10.1007/s11032-025-01571-3","DOIUrl":"10.1007/s11032-025-01571-3","url":null,"abstract":"<p><p>Taigu genic male-sterile wheat, containing the dominant gene <i>male sterile</i> (<i>Ms</i>) <i>2</i>, shows completely male-sterility in different genetic background and under various environments. The development of Aibai wheat with tightly linked <i>Ms2</i> and <i>Reduced height</i> (<i>Rht</i>)<i>-D1c</i>, offers possibility for identifying the male-sterile plants by investigation of reduced plant height. However, due to the extreme dwarfism of Aibai wheat caused by <i>Rht-D1c</i>, it inhabits a shadowed microenvironment caused by its fertile sibling plants. This results in delayed maturation of sterile plant progeny. In order to develop a novel germplasm with new visible marker for sorting male sterile plants conferred by <i>Ms2</i>, a binary vector containing <i>Bar</i>, <i>Ms2</i>, <i>Rht-D1b</i>, and <i>DsRed</i> driven by the aleurone-specific promoter <i>Ltp2</i> was constructed and introduced into the wheat Fielder using <i>Agrobacterium</i>-mediated transformation in this study. After investigation of the fertility, plant height and seed fluorescence of positive transgenic wheat plants, a line exhibited semi-dwarf male sterility, which could be reliably identified by the aleurone-specifically expressed red fluorescence in seeds, serving as a genetically stable reporter. Therefore, this study provides a novel male-sterile wheat that offers a powerful tool for hybrid seed production and facilitates genetic improvement in wheat through recurrent selection.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01571-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"54"},"PeriodicalIF":2.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marker assisted introgression of bacterial leaf blight and cowpea mosaic virus resistance into an elite cowpea cultivar C-152. 标记辅助对豇豆优良品种C-152的白叶枯病和花叶病毒抗性的导入。
IF 2.6 3区 农林科学
Molecular Breeding Pub Date : 2025-05-28 eCollection Date: 2025-06-01 DOI: 10.1007/s11032-025-01570-4
Hirenallur Chandappa Lohithaswa, Hebse Bhojappa Dinesh, Sidramappa Channappa Talekar, Kannalli Paramashivaiah Viswanatha, Mallana Goudra Mallikarjuna, Muntagodu Shreekanth Sowmya, Thaggihalli Veeranna Krishna, Poonam Singh, Dasannanamalige Siddeshi Ambika
{"title":"Marker assisted introgression of bacterial leaf blight and cowpea mosaic virus resistance into an elite cowpea cultivar C-152.","authors":"Hirenallur Chandappa Lohithaswa, Hebse Bhojappa Dinesh, Sidramappa Channappa Talekar, Kannalli Paramashivaiah Viswanatha, Mallana Goudra Mallikarjuna, Muntagodu Shreekanth Sowmya, Thaggihalli Veeranna Krishna, Poonam Singh, Dasannanamalige Siddeshi Ambika","doi":"10.1007/s11032-025-01570-4","DOIUrl":"10.1007/s11032-025-01570-4","url":null,"abstract":"<p><p>Cowpea is an important grain legume crop and a source of vegetarian protein. C-152, a popular and widely adapted variety of cowpea, became susceptible to major cowpea diseases, viz., bacterial leaf blight (BLB) and cowpea mosaic virus (CpMV). Thus, in the current investigation, we have introgressed BLB and CpMV resistance from V-16 and V-57817, respectively, to the C-152 variety. A marker assisted simultaneous and stepwise backcross breeding scheme was used to recover an improved version of C-152 with resistance to BLB and CpMV diseases. Foreground (CISP markers VuMt401 and VuMt397 for BLB and SSR markers MA15 and MA80 for CpMV) and background selections were practiced using gene-specific and recurrent genome specific (72 markers) polymorphic markers. Two independent BC<sub>2</sub>F<sub>4</sub> lines from each cross possessing <i>blb-1</i> and <i>cowpea mosaic resistance</i> gene with maximum genome recovery of the C-152 were inter-crossed to derive an inter-cross (IC) F<sub>4</sub> population. Among the 10 promising ICF<sub>4</sub> progenies, the line MC 17-2 (KBC-12), showing high yielding with resistance to BLB and CpMV, was selected. The superiority of the cowpea line MC 17-2 was evident in terms of a yield advantage of 8.68 to 28.68%, 9.30-47.00%, 1.10-8.10% over different check varieties in the initial varietal trial, advanced varietal trial (AVT)-I, and AVT-II, respectively. Further, the multi-location evaluation of KBC-12 (MC 17-2) with the check KBC-9 covering zones 5 and 6 of Karnataka reconfirmed the high-yielding potential and stability of KBC-12 across tested environments, as evident from AMMI and GGE biplots. Thus, the promising cowpea line KBC-12 was released for commercial cultivation in zones 5 and 6 in southern India during 2024 and can also be used as a donor (IC652010) of BLB and CpMV resistance. Our current study is one such examples that revealed the power of marker-assisted selection to deliver improved cultivars from lab to farmers' field.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01570-4.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 6","pages":"52"},"PeriodicalIF":2.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144199634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信