Ying Duan, Kailiang Bo, Qin Shu, Meng Zhang, Yuzi Shi, Yiqun Weng, Changlin Wang
{"title":"Development of recombinant inbred lines and QTL analysis of plant height and fruit shape-related traits in <i>Cucurbita pepo</i> L.","authors":"Ying Duan, Kailiang Bo, Qin Shu, Meng Zhang, Yuzi Shi, Yiqun Weng, Changlin Wang","doi":"10.1007/s11032-025-01592-y","DOIUrl":null,"url":null,"abstract":"<p><p>Zucchini (<i>Cucurbita pepo</i> subsp. <i>pepo</i>) stands as an economically vital crop in China. In zucchini breeding, plant architectural patterns and fruit morphological characteristics serve as pivotal traits. In this study, we employed quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) derived from two distinct inbred lines, JinGL (subsp. <i>ovifera</i>) and HM-S2 (subsp. <i>pepo</i>), in conjunction with a high-density genetic map. Our investigation focused on ten QTLs associated with six horticulturally significant traits, including hypocotyl length (HL), plant height (PH), and four fruit-related traits: fruit length (FL), fruit diameter (FD), fruit shape index (FSI), and fruit weight (FW). The QTLs governing HL and PH were mapped to Chr03/LG10 and named <i>qhl3.1</i> and <i>qph3.1</i>, respectively. The candidate gene <i>Cp4.1LG10g05910</i>/<i>CpDw</i> for <i>qph3.1</i> was successfully identified. Additionally, three novel QTLs related to fruit size and shape were discovered. Among them, <i>qfsi8.1/qfl8.1</i>, demarcated by Marker238258 and Marker240069 on Chromosome 08/Linkage group 17 (Chr08/LG17), is a new major QTL regulating the fruit shape of zucchini. Through genomic insertion-deletion (InDel) and qRT-PCR analyses, we predicted genes within the <i>qfsi8.1/qfl8.1</i> candidate interval, uncovering <i>Cp4.1LG17g02030/CpIAA12</i> and <i>Cp4.1LG17g02010/CpCalB</i> as potential candidate genes. We developed molecular markers tightly linked to <i>qph3.1</i> and <i>qfl8.1</i> and validated them in 171 and 224 <i>Cucurbita pepo</i> germplasms, achieving accuracy rates of 96% and 100%, respectively. This study deepens our understanding of the genetic basis of key traits and provides valuable references for molecular breeding in <i>Cucurbita pepo</i>.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01592-y.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 9","pages":"74"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12420555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01592-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Zucchini (Cucurbita pepo subsp. pepo) stands as an economically vital crop in China. In zucchini breeding, plant architectural patterns and fruit morphological characteristics serve as pivotal traits. In this study, we employed quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) derived from two distinct inbred lines, JinGL (subsp. ovifera) and HM-S2 (subsp. pepo), in conjunction with a high-density genetic map. Our investigation focused on ten QTLs associated with six horticulturally significant traits, including hypocotyl length (HL), plant height (PH), and four fruit-related traits: fruit length (FL), fruit diameter (FD), fruit shape index (FSI), and fruit weight (FW). The QTLs governing HL and PH were mapped to Chr03/LG10 and named qhl3.1 and qph3.1, respectively. The candidate gene Cp4.1LG10g05910/CpDw for qph3.1 was successfully identified. Additionally, three novel QTLs related to fruit size and shape were discovered. Among them, qfsi8.1/qfl8.1, demarcated by Marker238258 and Marker240069 on Chromosome 08/Linkage group 17 (Chr08/LG17), is a new major QTL regulating the fruit shape of zucchini. Through genomic insertion-deletion (InDel) and qRT-PCR analyses, we predicted genes within the qfsi8.1/qfl8.1 candidate interval, uncovering Cp4.1LG17g02030/CpIAA12 and Cp4.1LG17g02010/CpCalB as potential candidate genes. We developed molecular markers tightly linked to qph3.1 and qfl8.1 and validated them in 171 and 224 Cucurbita pepo germplasms, achieving accuracy rates of 96% and 100%, respectively. This study deepens our understanding of the genetic basis of key traits and provides valuable references for molecular breeding in Cucurbita pepo.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01592-y.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.