玉米叶枯病抗性qNCLB3.04的鉴定与精细定位

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-07-09 eCollection Date: 2025-07-01 DOI:10.1007/s11032-025-01581-1
Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai
{"title":"玉米叶枯病抗性qNCLB3.04的鉴定与精细定位","authors":"Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai","doi":"10.1007/s11032-025-01581-1","DOIUrl":null,"url":null,"abstract":"<p><p>Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen <i>Setosphaeria turcica</i>, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC<sub>1</sub>F<sub>1</sub> population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six <i>S. turcica</i> races. Through five field trials, five resistance QTLs against NCLB were identified in this BC<sub>1</sub>F<sub>1</sub> population. One of them, <i>qNCLB3.04</i> on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the <i>qNCLB3.04</i> locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, <i>qNCLB3.04</i> holds significant potential for improving maize broad-spectrum resistance against NCLB.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01581-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"59"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and fine-mapping of <i>qNCLB3.04</i> resistant to Northern Corn Leaf Blight.\",\"authors\":\"Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai\",\"doi\":\"10.1007/s11032-025-01581-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen <i>Setosphaeria turcica</i>, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC<sub>1</sub>F<sub>1</sub> population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six <i>S. turcica</i> races. Through five field trials, five resistance QTLs against NCLB were identified in this BC<sub>1</sub>F<sub>1</sub> population. One of them, <i>qNCLB3.04</i> on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the <i>qNCLB3.04</i> locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, <i>qNCLB3.04</i> holds significant potential for improving maize broad-spectrum resistance against NCLB.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01581-1.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 7\",\"pages\":\"59\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01581-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01581-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

北方玉米叶枯病(NCLB)是玉米的一种破坏性病害,由真菌病原菌灰斑(Setosphaeria turcica)引起。抗性数量性状位点(qtl)或基因的鉴定是选育耐久抗玉米品种的关键。尽管已经分离出了许多针对NCLB的抗性qtl,但迄今为止只有少数几个被精确定位。在这里,一个BC1F1群体是由抗性系CIMBL75和易感系辽3162杂交而成的。该群体接种了6个金盏花小种的混合分生孢子。通过5个田间试验,在该BC1F1群体中鉴定出5个NCLB抗性qtl。其中一种是bin3.04上的qNCLB3.04,在所有五项试验中都被反复检测到。它解释了4.8-9.3%的表型变异。采用基于子代的序列精细定位策略,将qNCLB3.04定位到5.053 Mb的区域。因此,qNCLB3.04具有显著的提高玉米对NCLB广谱抗性的潜力。补充资料:在线版本包含补充资料,下载地址:10.1007/s11032-025-01581-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and fine-mapping of qNCLB3.04 resistant to Northern Corn Leaf Blight.

Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen Setosphaeria turcica, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC1F1 population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six S. turcica races. Through five field trials, five resistance QTLs against NCLB were identified in this BC1F1 population. One of them, qNCLB3.04 on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the qNCLB3.04 locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, qNCLB3.04 holds significant potential for improving maize broad-spectrum resistance against NCLB.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01581-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信