Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai
{"title":"玉米叶枯病抗性qNCLB3.04的鉴定与精细定位","authors":"Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai","doi":"10.1007/s11032-025-01581-1","DOIUrl":null,"url":null,"abstract":"<p><p>Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen <i>Setosphaeria turcica</i>, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC<sub>1</sub>F<sub>1</sub> population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six <i>S. turcica</i> races. Through five field trials, five resistance QTLs against NCLB were identified in this BC<sub>1</sub>F<sub>1</sub> population. One of them, <i>qNCLB3.04</i> on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the <i>qNCLB3.04</i> locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, <i>qNCLB3.04</i> holds significant potential for improving maize broad-spectrum resistance against NCLB.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01581-1.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"59"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and fine-mapping of <i>qNCLB3.04</i> resistant to Northern Corn Leaf Blight.\",\"authors\":\"Junhua Wu, Wencai Yang, Xiangdong Shi, Bao Zhang, Min Jiang, Xin Qi, Jun Ma, Jennifer S Jaqueth, Bailin Li, Mingqiu Dai, Yunling Peng, Zhibing Lai\",\"doi\":\"10.1007/s11032-025-01581-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen <i>Setosphaeria turcica</i>, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC<sub>1</sub>F<sub>1</sub> population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six <i>S. turcica</i> races. Through five field trials, five resistance QTLs against NCLB were identified in this BC<sub>1</sub>F<sub>1</sub> population. One of them, <i>qNCLB3.04</i> on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the <i>qNCLB3.04</i> locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, <i>qNCLB3.04</i> holds significant potential for improving maize broad-spectrum resistance against NCLB.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01581-1.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 7\",\"pages\":\"59\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01581-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01581-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification and fine-mapping of qNCLB3.04 resistant to Northern Corn Leaf Blight.
Northern Corn Leaf Blight (NCLB), caused by the fungal pathogen Setosphaeria turcica, is a destructive disease on maize. Identification of resistance quantitative trait loci (QTLs) or genes is crucial for breeding maize varieties with durable resistance to NCLB. Although a lot of resistance QTLs against NCLB have been isolated, only a few have been fine-mapped to date. Here, a BC1F1 population was developed from a cross between the resistance line CIMBL75 and the susceptible line Liao3162. This population was inoculated with mixed conidia of six S. turcica races. Through five field trials, five resistance QTLs against NCLB were identified in this BC1F1 population. One of them, qNCLB3.04 on bin3.04, was repeatedly detected across all five trials. It explained 4.8-9.3% of phenotypic variation. Furthermore, the qNCLB3.04 locus was narrowed down to a 5.053 Mb region by using a progeny-based sequential fine-mapping strategy. Hence, qNCLB3.04 holds significant potential for improving maize broad-spectrum resistance against NCLB.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01581-1.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.