Genetic analysis of trade-offs among disease resistance, yield, and quality traits employing genome-wide association mapping in indica rice (Oryza sativa L.).

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-07-10 eCollection Date: 2025-07-01 DOI:10.1007/s11032-025-01578-w
Vinodkumar Naik Moode, Madhusudhan Puchakayala, Srividya K Gannavarapu, Madhavilatha Kommana, Lalam Krishna, Sivarama Lekkala, Navajeet Chakravartty, VBReddy Lachagari, Shaik Nafeez Umar, Srividhya Akkareddy, Issa Keerthi, Sreelakshmi Chintala, Nirmalkumar R Amjikarai, Lakshminarayana R Vemireddy
{"title":"Genetic analysis of trade-offs among disease resistance, yield, and quality traits employing genome-wide association mapping in indica rice (<i>Oryza sativa</i> L.).","authors":"Vinodkumar Naik Moode, Madhusudhan Puchakayala, Srividya K Gannavarapu, Madhavilatha Kommana, Lalam Krishna, Sivarama Lekkala, Navajeet Chakravartty, VBReddy Lachagari, Shaik Nafeez Umar, Srividhya Akkareddy, Issa Keerthi, Sreelakshmi Chintala, Nirmalkumar R Amjikarai, Lakshminarayana R Vemireddy","doi":"10.1007/s11032-025-01578-w","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic trade-offs among complex traits are often witnessed in rice, however, very little is known about the contributing genes and mechanisms to exploit in breeding programmes. Here, we aimed to understand the genetic trade-offs among disease resistance, quality, and yield traits employing genome-wide association mapping. In all, 78 common marker-trait associations (MTAs) were identified for the targeted traits. In addition, five pleiotropic MTAs, 17 tightly linked MTAs, and two pleiotropic and tightly linked MTAs were detected for various trait combinations. The majority of MTA clusters were observed for quality traits (15 clusters) followed by the combined yield and quality traits (5 clusters) while only one cluster was found for combined yield and disease resistance traits. Further, the prediction of candidate genes controlling MTA clusters by exploiting the publicly available rice genome databases, revealed D-type cyclin 3;1 and Xyloglucan endotransglucosylase were found to be responsible for controlling grain size traits. We found no significant large linkage drag blocks with major MTAs for the targeted traits indicating that the indica rice genotypes have fewer trade-offs compared to japonica. The current study provides deeper insights into the genetic trade-offs among complex traits in rice, aiding in the meticulous planning of future breeding strategies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01578-w.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"60"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01578-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic trade-offs among complex traits are often witnessed in rice, however, very little is known about the contributing genes and mechanisms to exploit in breeding programmes. Here, we aimed to understand the genetic trade-offs among disease resistance, quality, and yield traits employing genome-wide association mapping. In all, 78 common marker-trait associations (MTAs) were identified for the targeted traits. In addition, five pleiotropic MTAs, 17 tightly linked MTAs, and two pleiotropic and tightly linked MTAs were detected for various trait combinations. The majority of MTA clusters were observed for quality traits (15 clusters) followed by the combined yield and quality traits (5 clusters) while only one cluster was found for combined yield and disease resistance traits. Further, the prediction of candidate genes controlling MTA clusters by exploiting the publicly available rice genome databases, revealed D-type cyclin 3;1 and Xyloglucan endotransglucosylase were found to be responsible for controlling grain size traits. We found no significant large linkage drag blocks with major MTAs for the targeted traits indicating that the indica rice genotypes have fewer trade-offs compared to japonica. The current study provides deeper insights into the genetic trade-offs among complex traits in rice, aiding in the meticulous planning of future breeding strategies.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01578-w.

利用全基因组关联图谱分析籼稻(Oryza sativa L.)抗病、产量和品质性状的权衡。
在水稻中经常看到复杂性状之间的遗传权衡,然而,对于在育种计划中利用的起作用的基因和机制知之甚少。在这里,我们旨在利用全基因组关联图谱了解抗病、质量和产量性状之间的遗传权衡。总共有78个共同标记-性状关联(mta)被鉴定为目标性状。此外,在不同性状组合中检测到5个多效性mta, 17个紧密连锁mta,以及2个多效性和紧密连锁mta。MTA聚类以品质性状最多(15个),其次是产量和品质性状的结合(5个),而产量和抗病性状的结合只有1个聚类。此外,利用公开的水稻基因组数据库预测了控制MTA簇的候选基因,发现d型细胞周期蛋白3,1和木糖葡聚糖内转葡萄糖化酶负责控制粒度性状。我们发现,与主要mta相比,目标性状没有显著的大连锁阻滞,这表明籼稻基因型与粳稻相比具有更少的权衡。目前的研究为水稻复杂性状之间的遗传权衡提供了更深入的见解,有助于对未来育种策略的细致规划。补充信息:在线版本包含补充资料,提供地址:10.1007/s11032-025-01578-w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信