Identification of novel genomic regions associated with yield-related traits in cowpea (Vigna unguiculata [L.] Walp) landraces.

IF 3 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-07-29 eCollection Date: 2025-08-01 DOI:10.1007/s11032-025-01585-x
Lei Han, Baogen Wang, Xiaohua Wu, Xiaoyang Chen, Xiao Li, Ying Wang, Jian Wang, Qingya Tang, Zhongfu Lu, Guojing Li, Yong He, Xinyi Wu
{"title":"Identification of novel genomic regions associated with yield-related traits in cowpea (<i>Vigna unguiculata</i> [L.] Walp) landraces.","authors":"Lei Han, Baogen Wang, Xiaohua Wu, Xiaoyang Chen, Xiao Li, Ying Wang, Jian Wang, Qingya Tang, Zhongfu Lu, Guojing Li, Yong He, Xinyi Wu","doi":"10.1007/s11032-025-01585-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cowpea is an important multipurpose legume crop that used for food, feed and vegetable worldwide. Developing the high yield cultivars is the first target in cowpea breeding, however, the genetic basis of this complex trait is not yet well understood. To discover the genetic architecture of cowpea yield, a total of 215 cowpea landraces collected from Zhejiang Province were evaluated for four yield-related traits including branch number per plant (BNP), grain number per pod (GNP), pod length (PL), and pod number per plant (PNP). By resequencing this diversity panel, total of 3,880,169 high-confidence single nucleotide polymorphisms (SNPs) were identified, population structure analysis showed that these cowpea landraces were classified into four subpopulations and the subpopulation division was highly related to the pod length and pod-type. Through conducting a GWAS on the four traits, 24 genomic regions significantly associated with cowpea yield were detected and haplotype analysis showed the favorable genotypes of each locus has stronger genetic effect on the yield-related traits. Based on the cowpea G98 reference genome, six predicated genes (<i>VuG9806G022730</i>, <i>VuG9809G015960</i>, <i>VuG9801G022820</i>, <i>VuG9801G008990</i>, <i>VuG9801G016500</i>, <i>VuG9807G013020</i>) were identified as the likely candidate genes for BNP_6.2, BNP_9.1, GNP_1.1, PL_1.1, PNP_1.2 and PNP_7.1, respectively, which involving in multiple pathways such as auxin response and regulation, cell expansion and ovary development. These results will facilitate the molecular breeding of high yield cultivars in cowpea and benefit for improving the global food security and the nutritional structure of human diets.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01585-x.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 8","pages":"65"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01585-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Cowpea is an important multipurpose legume crop that used for food, feed and vegetable worldwide. Developing the high yield cultivars is the first target in cowpea breeding, however, the genetic basis of this complex trait is not yet well understood. To discover the genetic architecture of cowpea yield, a total of 215 cowpea landraces collected from Zhejiang Province were evaluated for four yield-related traits including branch number per plant (BNP), grain number per pod (GNP), pod length (PL), and pod number per plant (PNP). By resequencing this diversity panel, total of 3,880,169 high-confidence single nucleotide polymorphisms (SNPs) were identified, population structure analysis showed that these cowpea landraces were classified into four subpopulations and the subpopulation division was highly related to the pod length and pod-type. Through conducting a GWAS on the four traits, 24 genomic regions significantly associated with cowpea yield were detected and haplotype analysis showed the favorable genotypes of each locus has stronger genetic effect on the yield-related traits. Based on the cowpea G98 reference genome, six predicated genes (VuG9806G022730, VuG9809G015960, VuG9801G022820, VuG9801G008990, VuG9801G016500, VuG9807G013020) were identified as the likely candidate genes for BNP_6.2, BNP_9.1, GNP_1.1, PL_1.1, PNP_1.2 and PNP_7.1, respectively, which involving in multiple pathways such as auxin response and regulation, cell expansion and ovary development. These results will facilitate the molecular breeding of high yield cultivars in cowpea and benefit for improving the global food security and the nutritional structure of human diets.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01585-x.

豇豆(Vigna unguiculata)产量相关性状新基因组区域的鉴定[j]。[au:]地方赛马。
豇豆是一种重要的多用途豆科作物,在世界范围内用于食品、饲料和蔬菜。培育高产品种是豇豆育种的首要目标,但这一复杂性状的遗传基础尚不清楚。为探索豇豆产量的遗传结构,对浙江省215个豇豆地方品种的单株分枝数(BNP)、每荚粒数(GNP)、荚果长(PL)和单株荚果数(PNP) 4个产量相关性状进行了评价。通过对该多样性面板的重测序,共鉴定出3,880,169个高置信度单核苷酸多态性(snp),群体结构分析表明,这些豇豆地方品种可划分为4个亚群体,亚群体划分与荚长和荚型高度相关。通过对4个性状进行GWAS分析,检测到24个与豇豆产量显著相关的基因组区域,单倍型分析表明,每个位点的有利基因型对产量相关性状的遗传作用更强。基于豇豆G98参考基因组,鉴定出6个预测基因(VuG9806G022730、VuG9809G015960、VuG9801G022820、VuG9801G008990、VuG9801G016500、VuG9807G013020)分别为BNP_6.2、BNP_9.1、GNP_1.1、PL_1.1、PNP_1.2和PNP_7.1可能的候选基因,涉及生长素响应与调控、细胞扩增和卵巢发育等多种途径。这些研究结果将为豇豆高产品种的分子育种提供依据,为改善全球粮食安全和人类膳食营养结构做出贡献。补充信息:在线版本包含补充资料,提供地址为10.1007/s11032-025-01585-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信