Identification and validation of a novel tiller inhibition locus (tin7) on chromosome 2BL in wheat.

IF 2.6 3区 农林科学 Q1 AGRONOMY
Shuai Hou, Yuzhou Mou, Haojie Li, Caixia Li, Zhiqiang Wang, Yu Lin, Yueyue Liu, Yaxi Liu
{"title":"Identification and validation of a novel tiller inhibition locus (<i>tin7</i>) on chromosome 2BL in wheat.","authors":"Shuai Hou, Yuzhou Mou, Haojie Li, Caixia Li, Zhiqiang Wang, Yu Lin, Yueyue Liu, Yaxi Liu","doi":"10.1007/s11032-025-01567-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tiller number is a key determinant of the number of spikes per plant, significantly influencing yield. Here, we identify and characterize a novel tiller inhibition line, N2496. Using an F<sub>2</sub> segregating population derived from crossing N2496 and CN16, we mapped this locus. The F<sub>1</sub> line demonstrated a high number of tillers, while the F<sub>2</sub> population exhibited segregated ratios of 3:1 in tiller number. BSR-Seq analysis indicated that only one locus controls tiller number, located on chromosome 2B (Chr. 2B). This genetic analysis confirmed the presence of a single recessive locus controlling the tiller inhibition trait within this population. Subsequently, we constructed a genetic map on Chr. 2B using a wheat 55 K single nucleotide polymorphism array. By combining recombinant analysis with the genotype and phenotype of the F<sub>2-3</sub> family, we identified and named a major and novel locus, <i>tiller inhibition gene</i> (<i>tin7</i>), mapped within a 2.43 cM interval. The influence of <i>tin7</i> was verified across six different background populations all sharing N2496 as a common parent. Using new recombinant lines from these six populations, we further narrowed down the interval of <i>tin7</i> to a genetic interval of 2.08 cM. Analysis of thousand grain weight and grain-related traits suggests that by regulating tiller number, <i>tin7</i> holds the potential to increase yield in wheat. Our research provides access to a novel tiller number locus and available markers for regulating tiller number, which could be used in developing new cultivars with an optimal number of tillers.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01567-z.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 5","pages":"47"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045912/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01567-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Tiller number is a key determinant of the number of spikes per plant, significantly influencing yield. Here, we identify and characterize a novel tiller inhibition line, N2496. Using an F2 segregating population derived from crossing N2496 and CN16, we mapped this locus. The F1 line demonstrated a high number of tillers, while the F2 population exhibited segregated ratios of 3:1 in tiller number. BSR-Seq analysis indicated that only one locus controls tiller number, located on chromosome 2B (Chr. 2B). This genetic analysis confirmed the presence of a single recessive locus controlling the tiller inhibition trait within this population. Subsequently, we constructed a genetic map on Chr. 2B using a wheat 55 K single nucleotide polymorphism array. By combining recombinant analysis with the genotype and phenotype of the F2-3 family, we identified and named a major and novel locus, tiller inhibition gene (tin7), mapped within a 2.43 cM interval. The influence of tin7 was verified across six different background populations all sharing N2496 as a common parent. Using new recombinant lines from these six populations, we further narrowed down the interval of tin7 to a genetic interval of 2.08 cM. Analysis of thousand grain weight and grain-related traits suggests that by regulating tiller number, tin7 holds the potential to increase yield in wheat. Our research provides access to a novel tiller number locus and available markers for regulating tiller number, which could be used in developing new cultivars with an optimal number of tillers.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01567-z.

小麦2BL染色体上一个新的分蘖抑制位点tin7的鉴定与验证。
分蘖数是单株穗数的关键决定因素,对产量有显著影响。在这里,我们鉴定并鉴定了一种新的分蘖抑制系N2496。利用由N2496和CN16杂交得到的F2分离群体,我们定位了这个位点。F1系分蘖数较高,F2群体分蘖数分离比为3:1。BSR-Seq分析表明,控制分蘖数的位点只有1个,位于2B染色体(Chr. 2B)。遗传分析证实了该群体中存在控制分蘖抑制性状的单隐性位点。随后,我们利用小麦55k单核苷酸多态性阵列构建了Chr. 2B的遗传图谱。通过结合F2-3家族基因型和表型的重组分析,我们确定并命名了一个主要的新位点,分蘖抑制基因(tin7),定位在2.43 cM的间隔内。在6个不同的背景群体中验证了tin7的影响,这些群体都共享N2496作为共同的亲本。利用这6个群体的新重组系,我们进一步将tin7的遗传间隔缩小到2.08 cM。千粒重及籽粒相关性状分析表明,tin7通过调控分蘖数,具有提高小麦产量的潜力。本研究提供了一种新的分蘖数基因座和有效的分蘖数调控标记,可用于培育最佳分蘖数的水稻新品种。补充资料:在线版本包含补充资料,下载地址:10.1007/s11032-025-01567-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信