{"title":"小麦突变体jg1489 5B染色体早抽穗相关新候选基因的鉴定","authors":"Qingxia Chang, Hongchun Xiong, Huijun Guo, Yongdun Xie, Linshu Zhao, Jiayu Gu, Huiyuan Li, Shirong Zhao, Yuping Ding, Yumei Zhang, Luxiang Liu","doi":"10.1007/s11032-025-01580-2","DOIUrl":null,"url":null,"abstract":"<p><p>Heading date (HD) is a critical agronomic trait that influences wheat's adaptation to environmental conditions and plays a pivotal role in yield stability. In this study, an early-heading mutant <i>jg1489</i> was identified following γ-ray irradiation of the wild type (WT) wheat variety Jing411. This mutant headed 2-3 days earlier than the WT, with no significant differences in other yield-related traits. Bulked Segregant Analysis (BSA), genetic linkage analysis of the F<sub>2</sub> population from a cross between the WT and mutant, and phenotypic validation in F<sub>2:3</sub> lines were used to finely map the HD gene to a 12.4-Mb region on chromosome 5B. Transcriptome analysis of developing spikes from both WT and <i>jg1489</i> at three key developmental stages revealed that differentially expressed genes (DEGs) were significantly enriched in pathways related to photosynthesis and photosynthesis-antenna proteins, suggesting a potential role in photosynthetic regulation. Within the mapped region, six high-probability candidate genes were identified based on sequence variation and expression patterns. Functional annotation, supported by studies of homologs in other species, highlighted three genes encoding serine proteases, bromodomain-containing protein, and UTP-glucose-1-phosphate uridylyltransferase as the most likely regulators of HD. These findings provide valuable insights into the genetic regulation of HD in wheat and support the development of new wheat varieties with optimized heading times.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01580-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 7","pages":"57"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176714/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of novel candidate gene associated with early heading on chromosome 5B in wheat mutant <i>jg1489</i>.\",\"authors\":\"Qingxia Chang, Hongchun Xiong, Huijun Guo, Yongdun Xie, Linshu Zhao, Jiayu Gu, Huiyuan Li, Shirong Zhao, Yuping Ding, Yumei Zhang, Luxiang Liu\",\"doi\":\"10.1007/s11032-025-01580-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heading date (HD) is a critical agronomic trait that influences wheat's adaptation to environmental conditions and plays a pivotal role in yield stability. In this study, an early-heading mutant <i>jg1489</i> was identified following γ-ray irradiation of the wild type (WT) wheat variety Jing411. This mutant headed 2-3 days earlier than the WT, with no significant differences in other yield-related traits. Bulked Segregant Analysis (BSA), genetic linkage analysis of the F<sub>2</sub> population from a cross between the WT and mutant, and phenotypic validation in F<sub>2:3</sub> lines were used to finely map the HD gene to a 12.4-Mb region on chromosome 5B. Transcriptome analysis of developing spikes from both WT and <i>jg1489</i> at three key developmental stages revealed that differentially expressed genes (DEGs) were significantly enriched in pathways related to photosynthesis and photosynthesis-antenna proteins, suggesting a potential role in photosynthetic regulation. Within the mapped region, six high-probability candidate genes were identified based on sequence variation and expression patterns. Functional annotation, supported by studies of homologs in other species, highlighted three genes encoding serine proteases, bromodomain-containing protein, and UTP-glucose-1-phosphate uridylyltransferase as the most likely regulators of HD. These findings provide valuable insights into the genetic regulation of HD in wheat and support the development of new wheat varieties with optimized heading times.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01580-2.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 7\",\"pages\":\"57\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176714/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01580-2\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01580-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification of novel candidate gene associated with early heading on chromosome 5B in wheat mutant jg1489.
Heading date (HD) is a critical agronomic trait that influences wheat's adaptation to environmental conditions and plays a pivotal role in yield stability. In this study, an early-heading mutant jg1489 was identified following γ-ray irradiation of the wild type (WT) wheat variety Jing411. This mutant headed 2-3 days earlier than the WT, with no significant differences in other yield-related traits. Bulked Segregant Analysis (BSA), genetic linkage analysis of the F2 population from a cross between the WT and mutant, and phenotypic validation in F2:3 lines were used to finely map the HD gene to a 12.4-Mb region on chromosome 5B. Transcriptome analysis of developing spikes from both WT and jg1489 at three key developmental stages revealed that differentially expressed genes (DEGs) were significantly enriched in pathways related to photosynthesis and photosynthesis-antenna proteins, suggesting a potential role in photosynthetic regulation. Within the mapped region, six high-probability candidate genes were identified based on sequence variation and expression patterns. Functional annotation, supported by studies of homologs in other species, highlighted three genes encoding serine proteases, bromodomain-containing protein, and UTP-glucose-1-phosphate uridylyltransferase as the most likely regulators of HD. These findings provide valuable insights into the genetic regulation of HD in wheat and support the development of new wheat varieties with optimized heading times.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01580-2.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.