Journal of Biophotonics最新文献

筛选
英文 中文
Noninvasive cardiac hemodynamics monitoring of acute myocardial ischemia in rats using near-infrared spectroscopy: A pilot study 利用近红外光谱对大鼠急性心肌缺血进行无创心脏血液动力学监测:试点研究。
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-27 DOI: 10.1002/jbio.202300474
Sifan Chen, Qiao Li, Qinyu Pan, Qiuyan Yin, Liang Yue, Peng Zhang, Gong Chen, Weichao Liu
{"title":"Noninvasive cardiac hemodynamics monitoring of acute myocardial ischemia in rats using near-infrared spectroscopy: A pilot study","authors":"Sifan Chen,&nbsp;Qiao Li,&nbsp;Qinyu Pan,&nbsp;Qiuyan Yin,&nbsp;Liang Yue,&nbsp;Peng Zhang,&nbsp;Gong Chen,&nbsp;Weichao Liu","doi":"10.1002/jbio.202300474","DOIUrl":"10.1002/jbio.202300474","url":null,"abstract":"<p>Noninvasive and real-time optical detection of cardiac hemodynamics dysfunction during myocardial ischemia remains challenging. In this study, we developed a near-infrared spectroscopy device to monitor rats' myocardial hemodynamics. The well-designed system can accurately reflect the hemodynamics changes by the classic upper limb ischemia test. Systemic hypoxia by disconnecting to the ventilator and cardiac ischemia by coronary artery slipknot ligation was conducted to monitor myocardial hemodynamics. When systemic hypoxia occurred, ΔHbR and ΔtHb increased significantly, whereas ΔHbO decreased rapidly. When coronary blood flow was obstructed by slipknots, cardiothoracic ΔHbO immediately begins to decline, while ΔHbR also significantly increases. Simultaneously, SpO<sub>2</sub> did not show any obvious changes during myocardial ischemia, while SpO<sub>2</sub> decreased significantly during systemic hypoxia. These results demonstrated that cardiothoracic hemodynamics stemmed from myocardial ischemia. This pilot study demonstrated the practicality of noninvasive, low-cost optical monitoring for cardiac oxygenation dysfunction in rats.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm 利用多光谱 IPPG 技术结合深度学习算法实现高精度心率检测。
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-27 DOI: 10.1002/jbio.202400119
Yu Wang, Yu Ren, Tingting Wang, Dongliang Li, Hongxing Cai, Boyu Ji
{"title":"High-accuracy heart rate detection using multispectral IPPG technology combined with a deep learning algorithm","authors":"Yu Wang,&nbsp;Yu Ren,&nbsp;Tingting Wang,&nbsp;Dongliang Li,&nbsp;Hongxing Cai,&nbsp;Boyu Ji","doi":"10.1002/jbio.202400119","DOIUrl":"10.1002/jbio.202400119","url":null,"abstract":"<p>Image Photoplethysmography (IPPG) technology is a noncontact physiological parameter detection technology, which has been widely used in heart rate (HR) detection. However, traditional imaging devices still have issues such as narrower receiving spectral range and inferior motion detection performance. In this paper, we propose a HR detection method based on multi-spectral video. Our method combining multispectral imaging with IPPG technology provides more accurate physiological information. To realize real-time evaluation of HR directly from facial multispectral videos, we propose a new end-to-end neural network, namely IPPGResNet18. The IPPGResNet18 model was trained on the multispectral video dataset from which better results were achieved: MAE = 2.793, RMSE = 3.695, SD = 3.707, <i>p</i> = 0.304. The experimental results demonstrate a high accuracy of HR detection under motion state using this detection method. In respect of real-time monitoring of HR during movement, our method is obviously superior to the conventional technical solutions.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical parameters of healthy and tumor breast tissues in mice 小鼠健康和肿瘤乳腺组织的光学参数。
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-26 DOI: 10.1002/jbio.202400123
Elina A. Genina, Ekaterina N. Lazareva, Yuri I. Surkov, Isabella A. Serebryakova, Natalya A. Shushunova
{"title":"Optical parameters of healthy and tumor breast tissues in mice","authors":"Elina A. Genina,&nbsp;Ekaterina N. Lazareva,&nbsp;Yuri I. Surkov,&nbsp;Isabella A. Serebryakova,&nbsp;Natalya A. Shushunova","doi":"10.1002/jbio.202400123","DOIUrl":"10.1002/jbio.202400123","url":null,"abstract":"<p>Knowledge of the optical parameters of tumors is important for choosing the correct laser treatment parameters. In this paper, optical properties and refraction indices of breast tissue in healthy mice and a 4T1 model mimicking human breast cancer have been measured. A significant decrease in both the scattering and refractive index of tumor tissue has been observed. The change in tissue morphology has induced the change in the slope of the scattering spectrum. Thus, the light penetration depth into tumor has increased by almost 1.5–2 times in the near infrared “optical windows.” Raman spectra have shown lower lipid content and higher protein content in tumor. The difference in the optical parameters of the tissues under study makes it possible to reliably differentiate them. The results may be useful for modeling the distribution of laser radiation in healthy tissues and cancers for deriving optimal irradiation conditions in photodynamic therapy.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study 利用光学相干弹性成像技术检测拉伸肠壁各层出现的破裂:试点研究。
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-25 DOI: 10.1002/jbio.202400086
Elena B. Kiseleva, Alexander A. Sovetsky, Maksim G. Ryabkov, Ekaterina V. Gubarkova, Anton A. Plekhanov, Evgeniya L. Bederina, Arseniy L. Potapov, Alexandra Y. Bogomolova, Vladimir Y. Zaitsev, Natalia D. Gladkova
{"title":"Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study","authors":"Elena B. Kiseleva,&nbsp;Alexander A. Sovetsky,&nbsp;Maksim G. Ryabkov,&nbsp;Ekaterina V. Gubarkova,&nbsp;Anton A. Plekhanov,&nbsp;Evgeniya L. Bederina,&nbsp;Arseniy L. Potapov,&nbsp;Alexandra Y. Bogomolova,&nbsp;Vladimir Y. Zaitsev,&nbsp;Natalia D. Gladkova","doi":"10.1002/jbio.202400086","DOIUrl":"10.1002/jbio.202400086","url":null,"abstract":"<p>We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (<i>n</i> = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing polarization response of monolayer cell cultures with entangled photon pairs 用纠缠光子对探测单层细胞培养物的偏振响应
IF 2.8 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-22 DOI: 10.1002/jbio.202400018
L. Zhang, V. R. Besaga, P. Rühl, C. Zou, S. H. Heinemann, Y. Wang, F. Setzpfandt
{"title":"Probing polarization response of monolayer cell cultures with entangled photon pairs","authors":"L. Zhang, V. R. Besaga, P. Rühl, C. Zou, S. H. Heinemann, Y. Wang, F. Setzpfandt","doi":"10.1002/jbio.202400018","DOIUrl":"https://doi.org/10.1002/jbio.202400018","url":null,"abstract":"This study addresses the critical need for high signal‐to‐noise ratio in optical detection methods for biological sample discrimination under low‐photon‐flux conditions to ensure accuracy without compromising sample integrity. We explore polarization‐based probing, which often excels over intensity modulation when assessing a specimen's morphology. Leveraging non‐classical light sources, our approach capitalizes on sub‐Poissonian photon statistics and quantum correlation‐based measurements. We present a novel, highly sensitive method for probing single‐layer cell cultures using entangled photon pairs. Our approach demonstrates potential for monolayer cell analysis, distinguishing between two types of monolayer cells and their host medium. The experimental results highlight our method's sensitivity, showcasing its potential for biological sample detection using quantum techniques, and paving the way for advanced diagnostic methodologies.<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/jbio202400018-gra-0001.png\" xlink:title=\"image\"/>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostic application in streptozotocin-induced diabetic retinopathy rats: A study based on Raman spectroscopy and machine learning 链脲佐菌素诱导的糖尿病视网膜病变大鼠的诊断应用:基于拉曼光谱和机器学习的研究
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-21 DOI: 10.1002/jbio.202400115
Kunhong Xiao, Li Li, Yang Chen, Rong Lin, Boyuan Wen, Zhiqiang Wang, Yan Huang
{"title":"Diagnostic application in streptozotocin-induced diabetic retinopathy rats: A study based on Raman spectroscopy and machine learning","authors":"Kunhong Xiao,&nbsp;Li Li,&nbsp;Yang Chen,&nbsp;Rong Lin,&nbsp;Boyuan Wen,&nbsp;Zhiqiang Wang,&nbsp;Yan Huang","doi":"10.1002/jbio.202400115","DOIUrl":"10.1002/jbio.202400115","url":null,"abstract":"<p>Vision impairment caused by diabetic retinopathy (DR) is often irreversible, making early-stage diagnosis imperative. Raman spectroscopy emerges as a powerful tool, capable of providing molecular fingerprints of tissues. This study employs RS to detect ex vivo retinal tissue from diabetic rats at various stages of the disease. Transmission electron microscopy was utilized to reveal the ultrastructural changes in retinal tissue. Following spectral preprocessing of the acquired data, the random forest and orthogonal partial least squares-discriminant analysis algorithms were employed for spectral data analysis. The entirety of Raman spectra and all annotated bands accurately and distinctly differentiate all animal groups, and can identify significant molecules from the spectral data. Bands at 524, 1335, 543, and 435 cm<sup>−1</sup> were found to be associated with the preproliferative phase of DR. Bands at 1045 and 1335 cm<sup>−1</sup> were found to be associated with early stages of DR.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective induction of senescence in cancer cells through near-infrared light treatment via mitochondrial modulation 通过线粒体调控近红外光处理选择性诱导癌细胞衰老
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-21 DOI: 10.1002/jbio.202400046
I. Kalampouka, R. R. Mould, S. W. Botchway, A. M. Mackenzie, A. V. Nunn, E. L. Thomas, J. D. Bell
{"title":"Selective induction of senescence in cancer cells through near-infrared light treatment via mitochondrial modulation","authors":"I. Kalampouka,&nbsp;R. R. Mould,&nbsp;S. W. Botchway,&nbsp;A. M. Mackenzie,&nbsp;A. V. Nunn,&nbsp;E. L. Thomas,&nbsp;J. D. Bell","doi":"10.1002/jbio.202400046","DOIUrl":"10.1002/jbio.202400046","url":null,"abstract":"<p>Photobiomodulation, utilising non-ionising light in the visible and near-infrared (NIR) spectrum, has been suggested as a potential method for enhancing tissue repair, reducing inflammation and possibly mitigating cancer-therapy-associated side effects. NIR light is suggested to be absorbed intracellularly, mainly by chromophores within the mitochondria. This study examines the impact of 734 nm NIR light on cellular senescence. Cancer (MCF7 and A549) and non-cancer (MCF10A and IMR-90) cell populations were subjected to 63 mJ/cm<sup>2</sup> NIR-light exposure for 6 days. Senescence levels were quantified by measuring active senescence-associated beta-galactosidase. Exposure to NIR light significantly increases senescence levels in cancer (10.0%–203.2%) but not in non-cancer cells (<i>p</i> &gt; 0.05). Changes in senescence were associated with significant modulation of mitochondrial homeostasis, including increased levels of reactive oxygen species (<i>p</i> &lt; 0.05) and mitochondrial membrane potential (<i>p</i> &lt; 0.05) post-NIR-light treatment. These results suggest that NIR light modulates cellular chemistry, arresting the proliferation of cancer cells via senescence induction while sparing non-cancer cells.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact Linnik-type hyperspectral quantitative phase microscope for advanced classification of cellular components 用于细胞成分高级分类的紧凑型林奈克式高光谱定量相显微镜。
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-20 DOI: 10.1002/jbio.202400088
Himanshu Joshi, Bhanu Pratap Singh, Ankit Butola, Varun Surya, Deepika Mishra, Krishna Agarwal, Dalip Singh Mehta
{"title":"Compact Linnik-type hyperspectral quantitative phase microscope for advanced classification of cellular components","authors":"Himanshu Joshi,&nbsp;Bhanu Pratap Singh,&nbsp;Ankit Butola,&nbsp;Varun Surya,&nbsp;Deepika Mishra,&nbsp;Krishna Agarwal,&nbsp;Dalip Singh Mehta","doi":"10.1002/jbio.202400088","DOIUrl":"10.1002/jbio.202400088","url":null,"abstract":"<p>Hyperspectral quantitative phase microscopy (HS-QPM) involves the acquisition of phase images across narrow spectral bands, which enables wavelength-dependent study of different biological samples. In the present work, a compact Linnik-type HS-QPM system is developed to reduce the instability and complexity associated with conventional HS-QPM techniques. The use of a single objective lens for both reference and sample arms makes the setup compact. The capabilities of the system are demonstrated by evaluating the HS phase map of both industrial and biological specimens. Phase maps of exfoliated cheek cells at different wavelengths are stacked to form a HS phase cube, adding spectral dimensionality to spatial phase distribution. Analysis of wavelength response of different cellular components are performed using principal component analysis to identify dominant spectral features present in the HS phase dataset. Findings of the study emphasize on the efficiency and effectiveness of HS-QPM for advancing cellular characterization in biomedical research and clinical applications.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical-resolution photoacoustic microelastography system for elasticity mapping: Phantom study and practical application 用于绘制弹性图的光学分辨光声微弹性成像系统:模型研究与实际应用
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-18 DOI: 10.1002/jbio.202400032
Min Wan, Yameng Zhang, Jiani Li, Zhiyu Qian, Fan Gao, Yamin Yang, Weitao Li
{"title":"Optical-resolution photoacoustic microelastography system for elasticity mapping: Phantom study and practical application","authors":"Min Wan,&nbsp;Yameng Zhang,&nbsp;Jiani Li,&nbsp;Zhiyu Qian,&nbsp;Fan Gao,&nbsp;Yamin Yang,&nbsp;Weitao Li","doi":"10.1002/jbio.202400032","DOIUrl":"10.1002/jbio.202400032","url":null,"abstract":"<p>Elastography is a noninvasive technique for characterizing the mechanical properties of biological tissues. Conventional methods have limitations in resolution and sensitivity, hindering disease detection in clinical diagnostics. To address these issues, this study developed an optical-resolution photoacoustic microelastography (OR-PAME) system. Using an agar tissue phantom with varying agar concentrations and contrast agents, PAME evaluated elasticity distribution under compression in both lateral and axial dimensions. It indirectly measured elastic properties by correlating photoacoustic responses, temporal lags, and induced displacement. We also applied the system to the study of the distribution of elastic characteristics of the liver tissue after ablation, which confirmed the potential of OR-PAME in the study of elastic characteristics. Quantitative analysis showed greater lateral displacement in regions with reduced agar concentrations, indicating decreased stiffness. PAME also detected vertical displacement along the axial plane, validating its efficacy in elastographic imaging. By improving resolution and penetration, PAME provides superior visualization of elasticity distribution. Its methodology correlates microstructural alterations with tissue biomechanics, holding potential implications in medical diagnostics.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of anisotropy factor of nanoparticle embedded tumor phantoms for plasmonic photothermal therapeutics 用于等离子体光热疗法的纳米粒子嵌入肿瘤模型各向异性因子的测量。
IF 2 3区 物理与天体物理
Journal of Biophotonics Pub Date : 2024-06-18 DOI: 10.1002/jbio.202400007
Vikas, Raj Kumar, Sanjeev Soni
{"title":"Measurement of anisotropy factor of nanoparticle embedded tumor phantoms for plasmonic photothermal therapeutics","authors":"Vikas,&nbsp;Raj Kumar,&nbsp;Sanjeev Soni","doi":"10.1002/jbio.202400007","DOIUrl":"10.1002/jbio.202400007","url":null,"abstract":"<p>Measurement of anisotropy factor (<i>g</i>) in the presence of nanoparticles (NPs) is important for understanding light distribution for plasmonic photothermal cancer therapeutics. Here, anisotropy factor is investigated through bilayer phantoms (epidermal and dermal) of various thicknesses incorporated with gold nanorods (GNRs) concentrations of 10–40 μg/mL by using in-house developed goniometric setup. Results show that 10 μg/mL GNRs in the phantom increase <i>g</i> by ~50% (<i>g</i> = 0.9471) w.r.t. phantom without NPs. Higher concentrations (40 μg/mL) of GNRs decrease <i>g</i> by ~43% (<i>g</i> = 0.5341) w.r.t. phantom with 10 μg/mL GNRs. For 40 μg/mL GNRs phantom, the anisotropy factor reduces by 47% for phantom thickness from 600 to 1800 μm. Anisotropy factor of GNR embedded phantom increased by 44% by using glycerol (10%–40%). Incorporation of NPs in a tumor significantly affects <i>g</i>, a major parameter for light distribution. These measurements provide insights for light scattering based on nanoparticle doses for plasmonic photothermal therapeutics.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信