高通量显微镜外周血涂片分析贫血筛查的研制。

A M Arunnagiri, M Sasikala, N Ramadass, S Mullai Venthan
{"title":"高通量显微镜外周血涂片分析贫血筛查的研制。","authors":"A M Arunnagiri, M Sasikala, N Ramadass, S Mullai Venthan","doi":"10.1002/jbio.70024","DOIUrl":null,"url":null,"abstract":"<p><p>The conventional method of screening for anemia requires pathologists to manually examine slides via microscope, a tedious process during health emergencies. This study presents an automated high-throughput optical digital microscope system capable of sequentially scanning and analyzing 10 blood smear slides per batch in under 15 min using a Laplacian-based autofocusing algorithm at 40x magnification. The acquired images are segmented via the YOLOv5 algorithm, and morphological features of red blood cells (RBCs) are classified using a multilayer perceptron (MLP) model. The system achieved 90.6% accuracy, 95% precision, 91% sensitivity, and 94% specificity in classifying anemia subtypes (macrocytic, microcytic, normocytic) and healthy samples. The trained model is integrated into an Android application for real-time geographic mapping of anemic clusters, enabling healthcare workers to prioritize interventions efficiently. This high-throughput approach eliminates the need for immersion oil and manual slide handling, demonstrating significant potential for rapid, scalable anemia screening in resource-limited settings.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70024"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a High-Throughput Microscope for the Analysis of Peripheral Blood Smears for Anemia Screening.\",\"authors\":\"A M Arunnagiri, M Sasikala, N Ramadass, S Mullai Venthan\",\"doi\":\"10.1002/jbio.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conventional method of screening for anemia requires pathologists to manually examine slides via microscope, a tedious process during health emergencies. This study presents an automated high-throughput optical digital microscope system capable of sequentially scanning and analyzing 10 blood smear slides per batch in under 15 min using a Laplacian-based autofocusing algorithm at 40x magnification. The acquired images are segmented via the YOLOv5 algorithm, and morphological features of red blood cells (RBCs) are classified using a multilayer perceptron (MLP) model. The system achieved 90.6% accuracy, 95% precision, 91% sensitivity, and 94% specificity in classifying anemia subtypes (macrocytic, microcytic, normocytic) and healthy samples. The trained model is integrated into an Android application for real-time geographic mapping of anemic clusters, enabling healthcare workers to prioritize interventions efficiently. This high-throughput approach eliminates the need for immersion oil and manual slide handling, demonstrating significant potential for rapid, scalable anemia screening in resource-limited settings.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e70024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.70024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的贫血筛查方法需要病理学家通过显微镜手动检查载玻片,这在卫生紧急情况下是一个繁琐的过程。本研究提出了一种自动化的高通量光学数字显微镜系统,该系统使用基于拉普拉斯的自动聚焦算法,在40倍放大倍率下,在15分钟内每批扫描和分析10张血液涂片。通过YOLOv5算法对获取的图像进行分割,并使用多层感知器(MLP)模型对红细胞(rbc)的形态特征进行分类。该系统对贫血亚型(大细胞型、小细胞型、常细胞型)和健康样本的分类准确率为90.6%,精密度为95%,灵敏度为91%,特异性为94%。经过训练的模型被集成到一个用于贫血集群实时地理地图的Android应用程序中,使医护人员能够有效地优先考虑干预措施。这种高通量方法消除了浸入式油和手动载玻片处理的需要,在资源有限的环境中显示出快速、可扩展的贫血筛查的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a High-Throughput Microscope for the Analysis of Peripheral Blood Smears for Anemia Screening.

The conventional method of screening for anemia requires pathologists to manually examine slides via microscope, a tedious process during health emergencies. This study presents an automated high-throughput optical digital microscope system capable of sequentially scanning and analyzing 10 blood smear slides per batch in under 15 min using a Laplacian-based autofocusing algorithm at 40x magnification. The acquired images are segmented via the YOLOv5 algorithm, and morphological features of red blood cells (RBCs) are classified using a multilayer perceptron (MLP) model. The system achieved 90.6% accuracy, 95% precision, 91% sensitivity, and 94% specificity in classifying anemia subtypes (macrocytic, microcytic, normocytic) and healthy samples. The trained model is integrated into an Android application for real-time geographic mapping of anemic clusters, enabling healthcare workers to prioritize interventions efficiently. This high-throughput approach eliminates the need for immersion oil and manual slide handling, demonstrating significant potential for rapid, scalable anemia screening in resource-limited settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信