{"title":"Rapid, Label-Free Detection of Primary Central Nervous System Lymphoma Using Multiphoton Microscopy","authors":"Xingfu Wang, Na Fang, Liwen Hu, Zanyi Wu, Lianhuang Li, Guoping Li, Yupeng Chen, Jianxin Chen, Sheng Zhang, Yueshan Piao","doi":"10.1002/jbio.70014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate diagnosis is vital for treating primary central nervous system lymphoma (PCNSL) and determining patient prognosis in clinical practice. Currently, histological analysis stands as the gold standard for definitively diagnosing PCNSL, yet it is time-consuming and invasive. This study introduces multiphoton microscopy (MPM), utilizing second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), to detect human PCNSL. Several diagnostic features of PCNSL, such as increased cellularity, angiocentric infiltration pattern, geographic necrosis, perivascular reticulin deposits, and apoptosis niche, are captured. Moreover, with image processing, the extent of necrosis and perivascular reticulin deposits can be automatically assessed. These research findings underscore the capability of MPM for PCNSL identification. With the advancements in multiphoton endoscopes, in vivo detection of PCNSL may be achievable.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.70014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate diagnosis is vital for treating primary central nervous system lymphoma (PCNSL) and determining patient prognosis in clinical practice. Currently, histological analysis stands as the gold standard for definitively diagnosing PCNSL, yet it is time-consuming and invasive. This study introduces multiphoton microscopy (MPM), utilizing second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), to detect human PCNSL. Several diagnostic features of PCNSL, such as increased cellularity, angiocentric infiltration pattern, geographic necrosis, perivascular reticulin deposits, and apoptosis niche, are captured. Moreover, with image processing, the extent of necrosis and perivascular reticulin deposits can be automatically assessed. These research findings underscore the capability of MPM for PCNSL identification. With the advancements in multiphoton endoscopes, in vivo detection of PCNSL may be achievable.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.