Toward Informative Representations of Blood-Based Infrared Spectra via Unsupervised Deep Learning.

Corinna Wegner, Zita I Zarandy, Nico Feiler, Lea Gigou, Timo Halenke, Niklas Leopold-Kerschbaumer, Maik Krusche, Weronika Skibicka, Kosmas V Kepesidis
{"title":"Toward Informative Representations of Blood-Based Infrared Spectra via Unsupervised Deep Learning.","authors":"Corinna Wegner, Zita I Zarandy, Nico Feiler, Lea Gigou, Timo Halenke, Niklas Leopold-Kerschbaumer, Maik Krusche, Weronika Skibicka, Kosmas V Kepesidis","doi":"10.1002/jbio.70011","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores using unsupervised deep learning to find a low-dimensional representation of infrared molecular fingerprints of human blood. We developed a fully convolutional denoising autoencoder to process Fourier transform infrared (FTIR) spectroscopy data, aiming to condense the spectra into a set of latent variables. By utilizing the autoencoder's bottleneck architecture and a custom loss function, we effectively reduced noise while retaining essential molecular information. This method improved lung cancer detection accuracy by 2.6 percentage points in a case-control study. The resulting latent space not only compacts spectral data, but also highlights variables linked to disease presence, offering potential for improving diagnostics. Trial Registration: German Clinical Trials Register (DRKS): DRKS00013217.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70011"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores using unsupervised deep learning to find a low-dimensional representation of infrared molecular fingerprints of human blood. We developed a fully convolutional denoising autoencoder to process Fourier transform infrared (FTIR) spectroscopy data, aiming to condense the spectra into a set of latent variables. By utilizing the autoencoder's bottleneck architecture and a custom loss function, we effectively reduced noise while retaining essential molecular information. This method improved lung cancer detection accuracy by 2.6 percentage points in a case-control study. The resulting latent space not only compacts spectral data, but also highlights variables linked to disease presence, offering potential for improving diagnostics. Trial Registration: German Clinical Trials Register (DRKS): DRKS00013217.

本研究探索使用无监督深度学习来寻找人体血液红外分子指纹的低维表示。我们开发了一种全卷积去噪自动编码器来处理傅立叶变换红外(FTIR)光谱数据,旨在将光谱浓缩为一组潜在变量。通过利用自动编码器的瓶颈结构和自定义损失函数,我们有效地减少了噪音,同时保留了重要的分子信息。在一项病例对照研究中,这种方法将肺癌检测准确率提高了 2.6 个百分点。由此产生的潜在空间不仅压缩了频谱数据,还突出了与疾病存在相关的变量,为改进诊断提供了潜力。试验注册:德国临床试验注册中心(DRKS):DRKS00013217.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信