Linear Algebra and its Applications最新文献

筛选
英文 中文
Corrigendum to “A matricial view of the Collatz conjecture” [Linear Algebra Appl. 695 (2024) 163–167]
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-13 DOI: 10.1016/j.laa.2024.12.019
Pietro Paparella
{"title":"Corrigendum to “A matricial view of the Collatz conjecture” [Linear Algebra Appl. 695 (2024) 163–167]","authors":"Pietro Paparella","doi":"10.1016/j.laa.2024.12.019","DOIUrl":"10.1016/j.laa.2024.12.019","url":null,"abstract":"<div><div>There is a mistake in the proof of <span><span>Theorem 3</span></span> of “A matricial view of the Collatz conjecture” <span><span>[1]</span></span> that can not be rectified. As such, a revised statement and proof of <span><span>Theorem 3</span></span> is presented.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 608-609"},"PeriodicalIF":1.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Darboux transformations and the algebra D(W)
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-10 DOI: 10.1016/j.laa.2025.01.002
Ignacio Bono Parisi, Ines Pacharoni
{"title":"Darboux transformations and the algebra D(W)","authors":"Ignacio Bono Parisi,&nbsp;Ines Pacharoni","doi":"10.1016/j.laa.2025.01.002","DOIUrl":"10.1016/j.laa.2025.01.002","url":null,"abstract":"<div><div>The problem of finding weight matrices <span><math><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of size <span><math><mi>N</mi><mo>×</mo><mi>N</mi></math></span> such that the associated sequence of matrix-valued orthogonal polynomials are eigenfunctions of a second-order matrix differential operator is known as the Matrix Bochner Problem, and it is closely related to Darboux transformations of some differential operators.</div><div>This paper aims to study Darboux transformations between weight matrices and to establish a direct connection with the structure of the algebra <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> of all differential operators that have a sequence of matrix-valued orthogonal polynomials with respect to <em>W</em> as eigenfunctions.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 203-232"},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed tensor invariants of Lie color algebra
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-10 DOI: 10.1016/j.laa.2025.01.003
Santosha Pattanayak, Preena Samuel
{"title":"Mixed tensor invariants of Lie color algebra","authors":"Santosha Pattanayak,&nbsp;Preena Samuel","doi":"10.1016/j.laa.2025.01.003","DOIUrl":"10.1016/j.laa.2025.01.003","url":null,"abstract":"<div><div>In this paper, we consider the mixed tensor space of a <em>G</em>-graded vector space, where <em>G</em> is a finite abelian group. We obtain a spanning set of invariants of the associated symmetric algebra under the action of a color analogue of the general linear group which we refer to as the general linear color group. As a consequence, we obtain a generating set for the polynomial invariants, under the simultaneous action of the general linear color group, on color analogues of several copies of matrices. We show that in this special case, this is the set of trace monomials, which coincides with the set of generators given by Berele in <span><span>[2]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 1-17"},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral methods for matrix product factorization
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-10 DOI: 10.1016/j.laa.2025.01.005
Saieed Akbari , Yi-Zheng Fan , Fu-Tao Hu , Babak Miraftab , Yi Wang
{"title":"Spectral methods for matrix product factorization","authors":"Saieed Akbari ,&nbsp;Yi-Zheng Fan ,&nbsp;Fu-Tao Hu ,&nbsp;Babak Miraftab ,&nbsp;Yi Wang","doi":"10.1016/j.laa.2025.01.005","DOIUrl":"10.1016/j.laa.2025.01.005","url":null,"abstract":"<div><div>A graph <em>G</em> is factored into graphs <em>H</em> and <em>K</em> via a matrix product if there exist adjacency matrices <em>A</em>, <em>B</em>, and <em>C</em> of <em>G</em>, <em>H</em>, and <em>K</em>, respectively, such that <span><math><mi>A</mi><mo>=</mo><mi>B</mi><mi>C</mi></math></span>. In this paper, we study the spectral aspects of the matrix product of graphs, including regularity, bipartiteness, and connectivity. We show that if a graph <em>G</em> is factored into a connected graph <em>H</em> and a graph <em>K</em> with no isolated vertices, then certain properties hold. If <em>H</em> is non-bipartite, then <em>G</em> is connected. If <em>H</em> is bipartite and <em>G</em> is not connected, then <em>K</em> is a regular bipartite graph, and consequently, <em>n</em> is even. Furthermore, we show that trees are not factorizable, which answers a question posed by Maghsoudi et al.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 111-123"},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined inertias of nonnegative patterns with positive off-diagonal entries
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-10 DOI: 10.1016/j.laa.2025.01.008
Adam H. Berliner , Minerva Catral , D.D. Olesky , P. van den Driessche
{"title":"Refined inertias of nonnegative patterns with positive off-diagonal entries","authors":"Adam H. Berliner ,&nbsp;Minerva Catral ,&nbsp;D.D. Olesky ,&nbsp;P. van den Driessche","doi":"10.1016/j.laa.2025.01.008","DOIUrl":"10.1016/j.laa.2025.01.008","url":null,"abstract":"<div><div>For a positive <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> pattern <span><math><mi>A</mi></math></span>, it is known that the refined inertia of <span><math><mi>A</mi></math></span>, <span><math><mi>ri</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, is the set of all nonnegative integral 4-tuples <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mi>n</mi></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>≥</mo><mn>1</mn></math></span>; whereas if <span><math><mi>A</mi></math></span> has all off-diagonal entries positive but all diagonal entries 0, then <span><math><mi>ri</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> has the additional restriction that <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>≥</mo><mn>2</mn></math></span>. We focus on the intermediate nonnegative patterns, that is those patterns with all off-diagonal entries positive, <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> diagonal entries positive and the remaining <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> diagonal entries 0. We show that for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, there is no restriction on <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> for the refined inertia set, but <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>≥</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>. We do this by constructing nonnegative matrix realizations for the patterns with <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and 2 using the centralizer method, matrix bordering and superpattern results.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 271-283"},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-isometric liftings for operators similar to contractions
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-10 DOI: 10.1016/j.laa.2025.01.006
Laurian Suciu, Andra-Maria Stoica
{"title":"Quasi-isometric liftings for operators similar to contractions","authors":"Laurian Suciu,&nbsp;Andra-Maria Stoica","doi":"10.1016/j.laa.2025.01.006","DOIUrl":"10.1016/j.laa.2025.01.006","url":null,"abstract":"<div><div>A class of quasi-isometric liftings for the operators <em>T</em> similar to contractions in Hilbert spaces <span><math><mi>H</mi></math></span> is studied. These liftings are isometric operators on their ranges, and are naturally induced by <em>T</em> and an invertible intertwiner of <em>T</em> with a contraction. In the case when <em>T</em> is a quasicontraction, meaning that <em>T</em> is contractive on its range, we obtain a quasi-isometric lifting on a space <span><math><mi>K</mi><mo>⊃</mo><mi>H</mi></math></span>, which is isometric on <span><math><mi>K</mi><mo>⊖</mo><mi>H</mi></math></span>. Some liftings with closed ranges, or even similar to quasinormal partial isometries are mentioned. Additionally, we study the isomorphic minimal quasi-isometric liftings for <em>T</em>, as well as the uniqueness property of such liftings. Our results show similarities with those from the isometric dilation theory for contractions, although our context is more general than that of the latter.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 40-57"},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The triangulant
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-10 DOI: 10.1016/j.laa.2025.01.004
Tamás Bencze , Péter E. Frenkel
{"title":"The triangulant","authors":"Tamás Bencze ,&nbsp;Péter E. Frenkel","doi":"10.1016/j.laa.2025.01.004","DOIUrl":"10.1016/j.laa.2025.01.004","url":null,"abstract":"<div><div>We introduce the triangulant of two matrices, and relate it to the existence of orthogonal eigenvectors. We also use it for a new characterization of mutually unbiased bases. Generalizing the notion, we introduce higher order triangulants of two matrices, and relate them to the existence of nontrivially intersecting invariant subspaces of complementary dimensions.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 92-110"},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic embedding constants of fan graphs and graph joins
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-06 DOI: 10.1016/j.laa.2025.01.001
Wojciech Młotkowski , Nobuaki Obata
{"title":"Quadratic embedding constants of fan graphs and graph joins","authors":"Wojciech Młotkowski ,&nbsp;Nobuaki Obata","doi":"10.1016/j.laa.2025.01.001","DOIUrl":"10.1016/j.laa.2025.01.001","url":null,"abstract":"<div><div>We derive a general formula for the quadratic embedding constant of a graph join <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mi>G</mi></math></span>, where <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the empty graph on <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span> vertices and <em>G</em> is an arbitrary graph. Applying our formula to a fan graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the singleton graph and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the path on <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> vertices, we show that <span><math><mrow><mi>QEC</mi></mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>−</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mn>2</mn></math></span>, where <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the minimal zero of a new polynomial <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> related to Chebyshev polynomials of the second kind. Moreover, for an even <em>n</em> we have <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>min</mi><mo>⁡</mo><mrow><mi>ev</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, where the right-hand side is the minimal eigenvalue of the adjacency matrix <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. For an odd <em>n</em> we show that <span><math><mi>min</mi><mo>⁡</mo><mrow><mi>ev</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>≤</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>&lt;</mo><mi>min</mi><mo>⁡</mo><mrow><mi>ev</mi></mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 58-91"},"PeriodicalIF":1.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold graphs, Kemeny's constant, and related random walk parameters
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-06 DOI: 10.1016/j.laa.2024.12.022
Jane Breen , Sooyeong Kim , Alexander Low Fung , Amy Mann , Andrei A. Parfeni , Giovanni Tedesco
{"title":"Threshold graphs, Kemeny's constant, and related random walk parameters","authors":"Jane Breen ,&nbsp;Sooyeong Kim ,&nbsp;Alexander Low Fung ,&nbsp;Amy Mann ,&nbsp;Andrei A. Parfeni ,&nbsp;Giovanni Tedesco","doi":"10.1016/j.laa.2024.12.022","DOIUrl":"10.1016/j.laa.2024.12.022","url":null,"abstract":"<div><div>Kemeny's constant measures how fast a random walker moves around in a graph. Expressions for Kemeny's constant can be quite involved, and for this reason, many lines of research focus on graphs with structure that makes them amenable to more in-depth study (for example, regular graphs, acyclic graphs, and 1-connected graphs). In this article, we study Kemeny's constant for random walks on threshold graphs, which are an interesting family of graphs with properties that make examining Kemeny's constant difficult; that is, they are usually not regular, not acyclic, and not 1-connected. This article is a showcase of various techniques for calculating Kemeny's constant and related random walk parameters for graphs. We establish explicit formulae for <span><math><mi>K</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in terms of the construction code of a threshold graph, and completely determine the ordering of the accessibility indices of vertices in threshold graphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 284-313"},"PeriodicalIF":1.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric doubly stochastic inverse eigenvalue problem for odd sizes
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-12-31 DOI: 10.1016/j.laa.2024.12.020
Mohadese Raeisi Sarkhoni , Hossein Momenaee Kermani , Azim Rivaz
{"title":"Symmetric doubly stochastic inverse eigenvalue problem for odd sizes","authors":"Mohadese Raeisi Sarkhoni ,&nbsp;Hossein Momenaee Kermani ,&nbsp;Azim Rivaz","doi":"10.1016/j.laa.2024.12.020","DOIUrl":"10.1016/j.laa.2024.12.020","url":null,"abstract":"<div><div>The symmetric doubly stochastic inverse eigenvalue problem seeks to determine the necessary and sufficient conditions for a real list of eigenvalues to be realized by a symmetric doubly stochastic matrix. Nader et al. (2019) <span><span>[15]</span></span>, established that for odd integers <em>n</em> a list of the form <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mn>1</mn></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> cannot be the spectrum of any <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> doubly stochastic matrix. This implies that the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> is also unrealizable.</div><div>This paper extends these findings by proving that for odd <em>n</em> and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, the list <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> cannot be the spectrum of a symmetric doubly stochastic matrix. We demonstrate that for odd <em>n</em> the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, is indeed realizable as the spectrum of a symmetric doubly stochastic matrix.</div><div>Furthermore, we utilize our methodology to derive new sufficient conditions for the existence of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric doubly stochastic matrices with a prescribed list of eigenvalues. This leads to a condition for the existence of symmetric doubly stochastic matrices with a normalized Suleimanova spectrum. The paper concludes with additional partial results and illustrative examples.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 594-607"},"PeriodicalIF":1.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信