关于奇异矩阵的Šemrl守恒定理的一个变体

IF 1.1 3区 数学 Q1 MATHEMATICS
Alexandru Chirvasitu , Ilja Gogić , Mateo Tomašević
{"title":"关于奇异矩阵的Šemrl守恒定理的一个变体","authors":"Alexandru Chirvasitu ,&nbsp;Ilja Gogić ,&nbsp;Mateo Tomašević","doi":"10.1016/j.laa.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>For positive integers <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> its subset consisting of all matrices of rank at most <em>k</em>. We first show that whenever <span><math><mi>k</mi><mo>&gt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, any continuous spectrum-shrinking map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (i.e. <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo><mo>⊆</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for all <span><math><mi>X</mi><mo>∈</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>) either preserves characteristic polynomials or takes only nilpotent values. Moreover, for any <em>k</em> there exists a real analytic embedding of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> into the space of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> nilpotent matrices for all sufficiently large <em>n</em>. This phenomenon cannot occur when <em>ϕ</em> is injective and either <span><math><mi>k</mi><mo>&gt;</mo><mi>n</mi><mo>−</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> or the image of <em>ϕ</em> is contained in <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>. We then establish a main result of the paper – a variant of Šemrl's preserver theorem for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>: if <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, any injective continuous map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> that preserves commutativity and shrinks spectrum is of the form <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, when <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, which corresponds to the set of singular <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices, this result extends to maps <em>ϕ</em> which take values in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Finally, we discuss the indispensability of assumptions in our main result.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 298-319"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A variant of Šemrl's preserver theorem for singular matrices\",\"authors\":\"Alexandru Chirvasitu ,&nbsp;Ilja Gogić ,&nbsp;Mateo Tomašević\",\"doi\":\"10.1016/j.laa.2025.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For positive integers <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> its subset consisting of all matrices of rank at most <em>k</em>. We first show that whenever <span><math><mi>k</mi><mo>&gt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, any continuous spectrum-shrinking map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (i.e. <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo><mo>⊆</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for all <span><math><mi>X</mi><mo>∈</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>) either preserves characteristic polynomials or takes only nilpotent values. Moreover, for any <em>k</em> there exists a real analytic embedding of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> into the space of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> nilpotent matrices for all sufficiently large <em>n</em>. This phenomenon cannot occur when <em>ϕ</em> is injective and either <span><math><mi>k</mi><mo>&gt;</mo><mi>n</mi><mo>−</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> or the image of <em>ϕ</em> is contained in <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>. We then establish a main result of the paper – a variant of Šemrl's preserver theorem for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>: if <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, any injective continuous map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> that preserves commutativity and shrinks spectrum is of the form <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, when <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, which corresponds to the set of singular <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices, this result extends to maps <em>ϕ</em> which take values in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Finally, we discuss the indispensability of assumptions in our main result.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 298-319\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002733\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002733","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数1≤k≤n,设Mn为所有n×n复矩阵的代数,且Mn≤k是由秩不超过k的所有矩阵组成的子集。我们首先证明,当k>;n2时,任意连续谱缩映射φ:Mn≤k→Mn(即sp(φ (X))对所有X∈Mn≤k的sp(X))或保留特征多项式或仅取幂零值。此外,对于任意k,对于所有足够大的n,存在Mn≤k在n×n幂零矩阵空间中的实解析嵌入。当φ是内射且k>;n−n或φ的像包含在Mn≤k中时,不会出现这种现象。然后,我们建立了本文的一个主要结果——Šemrl保子定理对于Mn≤k的一个变体:当n≥3时,对于某可逆矩阵T∈Mn,任意保持交换性并缩小谱的内射连续映射φ:Mn≤k→Mn≤k的形式为φ(⋅)=T(⋅)T−1或φ(⋅)=T(⋅)tT−1。此外,当k=n−1时,对应于奇异n×n矩阵集,该结果扩展到在Mn中取值的映射ϕ。最后,我们讨论了主要结果中假设的不可缺少性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variant of Šemrl's preserver theorem for singular matrices
For positive integers 1kn let Mn be the algebra of all n×n complex matrices and Mnk its subset consisting of all matrices of rank at most k. We first show that whenever k>n2, any continuous spectrum-shrinking map ϕ:MnkMn (i.e. sp(ϕ(X))sp(X) for all XMnk) either preserves characteristic polynomials or takes only nilpotent values. Moreover, for any k there exists a real analytic embedding of Mnk into the space of n×n nilpotent matrices for all sufficiently large n. This phenomenon cannot occur when ϕ is injective and either k>nn or the image of ϕ is contained in Mnk. We then establish a main result of the paper – a variant of Šemrl's preserver theorem for Mnk: if n3, any injective continuous map ϕ:MnkMnk that preserves commutativity and shrinks spectrum is of the form ϕ()=T()T1 or ϕ()=T()tT1, for some invertible matrix TMn. Moreover, when k=n1, which corresponds to the set of singular n×n matrices, this result extends to maps ϕ which take values in Mn. Finally, we discuss the indispensability of assumptions in our main result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信