Alexandru Chirvasitu , Ilja Gogić , Mateo Tomašević
{"title":"关于奇异矩阵的Šemrl守恒定理的一个变体","authors":"Alexandru Chirvasitu , Ilja Gogić , Mateo Tomašević","doi":"10.1016/j.laa.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>For positive integers <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> its subset consisting of all matrices of rank at most <em>k</em>. We first show that whenever <span><math><mi>k</mi><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, any continuous spectrum-shrinking map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (i.e. <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo><mo>⊆</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for all <span><math><mi>X</mi><mo>∈</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>) either preserves characteristic polynomials or takes only nilpotent values. Moreover, for any <em>k</em> there exists a real analytic embedding of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> into the space of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> nilpotent matrices for all sufficiently large <em>n</em>. This phenomenon cannot occur when <em>ϕ</em> is injective and either <span><math><mi>k</mi><mo>></mo><mi>n</mi><mo>−</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> or the image of <em>ϕ</em> is contained in <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>. We then establish a main result of the paper – a variant of Šemrl's preserver theorem for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>: if <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, any injective continuous map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> that preserves commutativity and shrinks spectrum is of the form <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, when <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, which corresponds to the set of singular <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices, this result extends to maps <em>ϕ</em> which take values in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Finally, we discuss the indispensability of assumptions in our main result.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 298-319"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A variant of Šemrl's preserver theorem for singular matrices\",\"authors\":\"Alexandru Chirvasitu , Ilja Gogić , Mateo Tomašević\",\"doi\":\"10.1016/j.laa.2025.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For positive integers <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> its subset consisting of all matrices of rank at most <em>k</em>. We first show that whenever <span><math><mi>k</mi><mo>></mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, any continuous spectrum-shrinking map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (i.e. <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo><mo>⊆</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for all <span><math><mi>X</mi><mo>∈</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>) either preserves characteristic polynomials or takes only nilpotent values. Moreover, for any <em>k</em> there exists a real analytic embedding of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> into the space of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> nilpotent matrices for all sufficiently large <em>n</em>. This phenomenon cannot occur when <em>ϕ</em> is injective and either <span><math><mi>k</mi><mo>></mo><mi>n</mi><mo>−</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> or the image of <em>ϕ</em> is contained in <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>. We then establish a main result of the paper – a variant of Šemrl's preserver theorem for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span>: if <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, any injective continuous map <span><math><mi>ϕ</mi><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>≤</mo><mi>k</mi></mrow></msubsup></math></span> that preserves commutativity and shrinks spectrum is of the form <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, when <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, which corresponds to the set of singular <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices, this result extends to maps <em>ϕ</em> which take values in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Finally, we discuss the indispensability of assumptions in our main result.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 298-319\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002733\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002733","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A variant of Šemrl's preserver theorem for singular matrices
For positive integers let be the algebra of all complex matrices and its subset consisting of all matrices of rank at most k. We first show that whenever , any continuous spectrum-shrinking map (i.e. for all ) either preserves characteristic polynomials or takes only nilpotent values. Moreover, for any k there exists a real analytic embedding of into the space of nilpotent matrices for all sufficiently large n. This phenomenon cannot occur when ϕ is injective and either or the image of ϕ is contained in . We then establish a main result of the paper – a variant of Šemrl's preserver theorem for : if , any injective continuous map that preserves commutativity and shrinks spectrum is of the form or , for some invertible matrix . Moreover, when , which corresponds to the set of singular matrices, this result extends to maps ϕ which take values in . Finally, we discuss the indispensability of assumptions in our main result.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.