Linear Algebra and its Applications最新文献

筛选
英文 中文
Davis-Wielandt shells of 4 by 4 matrices 4 × 4矩阵的Davis-Wielandt壳层
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-16 DOI: 10.1016/j.laa.2025.06.006
Mao-Ting Chien , Hiroshi Nakazato
{"title":"Davis-Wielandt shells of 4 by 4 matrices","authors":"Mao-Ting Chien ,&nbsp;Hiroshi Nakazato","doi":"10.1016/j.laa.2025.06.006","DOIUrl":"10.1016/j.laa.2025.06.006","url":null,"abstract":"<div><div>In this paper, we study possible degrees of the boundary generating surfaces of the Davis-Wielandt shells of 4-by-4 upper triangular unitarily irreducible matrices. The degree can be any even number between 6 and 36 except 14,26 and 30.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 182-200"},"PeriodicalIF":1.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthogonalisability of joins of graphs 图的连接的正交性
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-06 DOI: 10.1016/j.laa.2025.06.001
Rupert H. Levene , Polona Oblak , Helena Šmigoc
{"title":"Orthogonalisability of joins of graphs","authors":"Rupert H. Levene ,&nbsp;Polona Oblak ,&nbsp;Helena Šmigoc","doi":"10.1016/j.laa.2025.06.001","DOIUrl":"10.1016/j.laa.2025.06.001","url":null,"abstract":"<div><div>A graph is said to be orthogonalisable if the set of real symmetric matrices whose off-diagonal pattern is prescribed by its edges contains an orthogonal matrix. We determine some necessary and some sufficient conditions on the sizes of the connected components of two graphs for their join to be orthogonalisable. In some cases, those conditions coincide, and we present several families of joins of graphs that are orthogonalisable.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 162-181"},"PeriodicalIF":1.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On indefinite-inner-product spaces induced by non-zero-scaled hypercomplex numbers 非零标度超复数诱导的不定内积空间
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-06 DOI: 10.1016/j.laa.2025.06.002
Daniel Alpay , Ilwoo Cho
{"title":"On indefinite-inner-product spaces induced by non-zero-scaled hypercomplex numbers","authors":"Daniel Alpay ,&nbsp;Ilwoo Cho","doi":"10.1016/j.laa.2025.06.002","DOIUrl":"10.1016/j.laa.2025.06.002","url":null,"abstract":"<div><div>In this paper, we consider a new type of adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> on the algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of all <em>t</em>-scaled hypercomplex numbers over the real field <span><math><mi>R</mi></math></span>, for all “non-zero” scales <span><math><mi>t</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>. We show that such a <span><math><mi>R</mi></math></span>-adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> generates a well-defined indefinite inner product <span><math><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, inducing a complete indefinite inner product space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> over <span><math><mi>R</mi></math></span>. Analysis and operator theory on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is considered up to this adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>. As application, by regarding <em>t</em>-scaled hypercomplex numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as embedded subset <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>, the corresponding (usual operator-theoretic) spectral theory on <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> is studied (over the complex field <span><math><mi>C</mi></math></span>). And we study relations between these usual spectral-theoretic results and the operator-theoretic results obtained from the <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>-depending structures; and then the free distributions of self-adjoint matrices of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> are characterized up to the normalized trace <em>τ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 99-161"},"PeriodicalIF":1.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal determinants of matrices over the roots of unity 单位根上矩阵的极大行列式
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-06 DOI: 10.1016/j.laa.2025.05.024
Guillermo Nuñez Ponasso
{"title":"Maximal determinants of matrices over the roots of unity","authors":"Guillermo Nuñez Ponasso","doi":"10.1016/j.laa.2025.05.024","DOIUrl":"10.1016/j.laa.2025.05.024","url":null,"abstract":"<div><div>We study the maximum absolute value of the determinant of matrices with entries in the set of <em>ℓ</em>-th roots of unity — this is a generalization of <em>D</em>-optimal designs and Hadamard's maximal determinant problem, which involves ±1 matrices. For general values of <em>ℓ</em>, we give sharpened determinantal upper bounds and constructions of matrices of large determinant. The maximal determinant problem in the cases <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>, <span><math><mi>ℓ</mi><mo>=</mo><mn>4</mn></math></span> is similar to the classical Hadamard maximal determinant problem for matrices with entries ±1, and many techniques can be generalized. For <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span> we give an additional construction of matrices with large determinant, and calculate the value of the maximal determinant of matrices with entries in the third-roots of unity for all orders <span><math><mi>n</mi><mo>&lt;</mo><mn>14</mn></math></span>. Additionally, we survey the case <span><math><mi>ℓ</mi><mo>=</mo><mn>4</mn></math></span> and exhibit an infinite family of maximal determinant matrices of odd order over the fourth roots of unity.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 201-243"},"PeriodicalIF":1.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity lists by diameter: All trees of diameter <7 按直径的多重性列表:所有直径<7的树
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-03 DOI: 10.1016/j.laa.2025.05.023
Charles R. Johnson , Benjamin Mudrak , Carlos M. Saiago
{"title":"Multiplicity lists by diameter: All trees of diameter <7","authors":"Charles R. Johnson ,&nbsp;Benjamin Mudrak ,&nbsp;Carlos M. Saiago","doi":"10.1016/j.laa.2025.05.023","DOIUrl":"10.1016/j.laa.2025.05.023","url":null,"abstract":"<div><div>This paper considers the problem of determining all multiplicity lists occurring among Hermitian matrices whose graph is a given tree from a new perspective. For all trees of diameter &lt;7, it is shown how to generate all possible lists. For diameter 5 and 6, this includes many nonlinear trees. In the process, for diameter 4 (double stars), the first succinct and direct description of all ordered lists, for each instance, is given. Observations of topological relationships are helpful.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 33-57"},"PeriodicalIF":1.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144242091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraic notes on testing sets for lower and upper grids 下网格和上网格测试集的代数注释
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-03 DOI: 10.1016/j.laa.2025.05.022
Eduardo Marques de Sá
{"title":"Algebraic notes on testing sets for lower and upper grids","authors":"Eduardo Marques de Sá","doi":"10.1016/j.laa.2025.05.022","DOIUrl":"10.1016/j.laa.2025.05.022","url":null,"abstract":"<div><div>For a given finite dimensional subspace <span><math><mi>P</mi></math></span> of <span><math><mi>k</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, where <em>k</em> is a field, a subset <span><math><mi>N</mi><mo>⊆</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a <span><math><mi>P</mi></math></span><em>-testing set</em> if any member of <span><math><mi>P</mi></math></span> that vanishes at all points of <span><math><mi>N</mi></math></span>, vanishes all over <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>; and we say <span><math><mi>N</mi></math></span> is <em>optimal</em> if it has the smallest cardinality among all <span><math><mi>P</mi></math></span>-testing sets. This is related to Lagrangian interpolation of data on a set <span><math><mi>N</mi></math></span> of nodes using functions from <span><math><mi>P</mi></math></span>. We consider a <em>generic version</em> of this interpolation problem, when <span><math><mi>P</mi></math></span> has a monomial basis <span><math><mi>B</mi></math></span> that we identify with a <em>grid</em> (i.e. a finite subset of <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mspace></mspace><mi>n</mi></mrow></msubsup></math></span>), each node is an <em>n</em>-tuple of independent variables and the set of nodes is identified with a grid <span><math><mi>C</mi><mo>⊆</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mspace></mspace><mi>n</mi></mrow></msubsup></math></span>. A corollary to our main result offers an explicit formula for the determinant of the linear system corresponding to the generic interpolation problem in case <span><math><mi>B</mi><mo>=</mo><mi>C</mi></math></span> is a <em>σ</em>-lower (or <em>σ</em>-upper) grid, where we say <span><math><mi>B</mi></math></span> is a <em>σ-lower</em> (resp., <em>σ-upper</em>) <em>grid</em> if it is a union of intervals of <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mspace></mspace><mi>n</mi></mrow></msubsup></math></span> having <em>σ</em> as common origin (resp., endpoint). We give explicit (optimal) <span><math><mi>P</mi></math></span>-testing sets for spaces having monomial bases determined by <em>σ</em>-lower (or <em>σ</em>-upper) grids. The corollaries at the end, for the finite field case, have potential use in Number Theory and Coding Theory.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 78-98"},"PeriodicalIF":1.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grothendieck group of the Leavitt path algebra over power graphs of prime-power cyclic groups 素幂循环群幂图上的Leavitt路径代数的Grothendieck群
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-06-02 DOI: 10.1016/j.laa.2025.05.021
Aslı Güçlükan İlhan , Müge Kanuni , Ekrem Şimşek
{"title":"Grothendieck group of the Leavitt path algebra over power graphs of prime-power cyclic groups","authors":"Aslı Güçlükan İlhan ,&nbsp;Müge Kanuni ,&nbsp;Ekrem Şimşek","doi":"10.1016/j.laa.2025.05.021","DOIUrl":"10.1016/j.laa.2025.05.021","url":null,"abstract":"<div><div>In this paper, the Grothendieck group of the Leavitt path algebra over the power graphs of all prime-power cyclic groups is studied by using a well-known computation from linear algebra. More precisely, the Smith normal form of the matrix derived from the adjacency matrix associated with the power graph of prime-power cyclic group is calculated.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 58-77"},"PeriodicalIF":1.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizations of spectral radius and toughness of graphs 图的谱半径和韧性表征
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-05-26 DOI: 10.1016/j.laa.2025.05.020
Shuaiwei Zhai , Yuanyuan Chen , Dan Li , Yinfen Zhu
{"title":"Characterizations of spectral radius and toughness of graphs","authors":"Shuaiwei Zhai ,&nbsp;Yuanyuan Chen ,&nbsp;Dan Li ,&nbsp;Yinfen Zhu","doi":"10.1016/j.laa.2025.05.020","DOIUrl":"10.1016/j.laa.2025.05.020","url":null,"abstract":"<div><div>The <em>toughness</em> of graph <em>G</em> and the <em>bipartite toughness</em> of bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> are defined by Chvátal <span><span>[9]</span></span> and Bian <span><span>[5]</span></span>, respectively. In this paper, we obtained the maximum spectral radius of connected graph with given toughness, and characterize the extremal graph. The extremal balanced bipartite graph with maximal spectral radius with fixed toughness is also characterized. Furthermore, we provide spectral radius conditions for balanced bipartite graph to be <em>r</em>-tough (<span><math><mi>r</mi><mo>⩾</mo><mn>2</mn></math></span> is an integer) and to be <em>r</em>-tough (<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>≥</mo><mn>1</mn></math></span> is a positive integer), respectively.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 1-14"},"PeriodicalIF":1.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144190160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decomposable numerical ranges of normal matrices 正规矩阵的可分解数值范围
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-05-23 DOI: 10.1016/j.laa.2025.05.016
Pan-Shun Lau , Chi-Kwong Li , Nung-Sing Sze
{"title":"Decomposable numerical ranges of normal matrices","authors":"Pan-Shun Lau ,&nbsp;Chi-Kwong Li ,&nbsp;Nung-Sing Sze","doi":"10.1016/j.laa.2025.05.016","DOIUrl":"10.1016/j.laa.2025.05.016","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) be the set of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;) complex matrices, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;per&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the permanent of a square matrix &lt;em&gt;X&lt;/em&gt;. We study the three types of generalized numerical ranges associated with generalized matrix functions&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∏&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;det&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; and&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;per&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; We give complete descriptions of the set &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for essentially hermitian matrices &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 237-254"},"PeriodicalIF":1.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polarization hierarchy for polynomial optimization over convex bodies, with applications to nonnegative matrix rank 凸体上多项式优化的极化层次,并应用于非负矩阵秩
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-05-22 DOI: 10.1016/j.laa.2025.05.019
Martin Plávala , Laurens T. Ligthart , David Gross
{"title":"The polarization hierarchy for polynomial optimization over convex bodies, with applications to nonnegative matrix rank","authors":"Martin Plávala ,&nbsp;Laurens T. Ligthart ,&nbsp;David Gross","doi":"10.1016/j.laa.2025.05.019","DOIUrl":"10.1016/j.laa.2025.05.019","url":null,"abstract":"<div><div>We construct a convergent family of outer approximations for the problem of optimizing polynomial functions over convex bodies subject to polynomial constraints. This is achieved by generalizing the <em>polarization hierarchy</em>, which has previously been introduced for the study of polynomial optimization problems over state spaces of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras, to convex cones in finite dimensions. If the convex bodies can be characterized by linear or semidefinite programs, then the same is true for our hierarchy. Convergence is proven by relating the problem to a certain <em>de Finetti theorem</em> for <em>general probabilistic theories</em>, which are studied as possible generalizations of quantum mechanics. We apply the method to the problem of nonnegative matrix factorization, and in particular to the <em>nested rectangles problem</em>. A numerical implementation of the third level of the hierarchy is shown to give rise to a very tight approximation for this problem.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 15-32"},"PeriodicalIF":1.0,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144212748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信