{"title":"零膨胀指数和数值范围","authors":"Kennett L. Dela Rosa","doi":"10.1016/j.laa.2025.07.018","DOIUrl":null,"url":null,"abstract":"<div><div>The zero-dilation index <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of a matrix <em>A</em> is the largest integer <em>k</em> for which <span><math><mo>[</mo><mtable><mtr><mtd><msub><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msub></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mo>⁎</mo></mtd><mtd><mo>⁎</mo></mtd></mtr></mtable><mo>]</mo></math></span> is unitarily similar to <em>A</em>. In this study, the zero-dilation indices of certain block matrices are considered, namely, the block matrix analogues of companion matrices and upper triangular KMS matrices, respectively shown as<span><span><span><math><mi>C</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></mtd><mtd><msubsup><mrow><mo>[</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mtd></mtr></mtable><mo>]</mo></mrow><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>K</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi>A</mi></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup></mtd><mtd><mo>⋯</mo></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>A</mi></mtd><mtd><mo>⋱</mo></mtd><mtd><mo>⋮</mo></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋱</mo></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>⋮</mo></mtd><mtd><mo>⋮</mo></mtd><mtd><mo>⋮</mo></mtd><mtd><mo>⋱</mo></mtd><mtd><mi>A</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋯</mo></mtd><mtd><mn>0</mn></mtd></mtr></mtable><mo>]</mo></mrow></math></span></span></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>K</mi></math></span> are <em>mn</em>-by-<em>mn</em> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>A</mi></math></span> are <em>n</em>-by-<em>n</em>. Provided <span><math><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is nonsingular, it is proved that <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> satisfies the following: if <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> is odd (respectively, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> is even), then <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> (respectively, <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>m</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>). In the odd <em>m</em> case, examples are given showing that it is possible to get as zero-dilation index each integer value between <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. On the other hand, <span><math><mi>d</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is proved to be equal to the number of nonnegative eigenvalues of <span><math><mo>(</mo><mi>K</mi><mo>+</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Alternative characterizations of <span><math><mi>d</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> are given. The circularity of the numerical range of <span><math><mi>K</mi></math></span> is also considered.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"726 ","pages":"Pages 91-112"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-dilation indices and numerical ranges\",\"authors\":\"Kennett L. Dela Rosa\",\"doi\":\"10.1016/j.laa.2025.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The zero-dilation index <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of a matrix <em>A</em> is the largest integer <em>k</em> for which <span><math><mo>[</mo><mtable><mtr><mtd><msub><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msub></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mo>⁎</mo></mtd><mtd><mo>⁎</mo></mtd></mtr></mtable><mo>]</mo></math></span> is unitarily similar to <em>A</em>. In this study, the zero-dilation indices of certain block matrices are considered, namely, the block matrix analogues of companion matrices and upper triangular KMS matrices, respectively shown as<span><span><span><math><mi>C</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></mtd><mtd><msubsup><mrow><mo>[</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mtd></mtr></mtable><mo>]</mo></mrow><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>K</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi>A</mi></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup></mtd><mtd><mo>⋯</mo></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>A</mi></mtd><mtd><mo>⋱</mo></mtd><mtd><mo>⋮</mo></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋱</mo></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>⋮</mo></mtd><mtd><mo>⋮</mo></mtd><mtd><mo>⋮</mo></mtd><mtd><mo>⋱</mo></mtd><mtd><mi>A</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋯</mo></mtd><mtd><mn>0</mn></mtd></mtr></mtable><mo>]</mo></mrow></math></span></span></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>K</mi></math></span> are <em>mn</em>-by-<em>mn</em> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>A</mi></math></span> are <em>n</em>-by-<em>n</em>. Provided <span><math><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is nonsingular, it is proved that <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> satisfies the following: if <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> is odd (respectively, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> is even), then <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> (respectively, <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>m</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>). In the odd <em>m</em> case, examples are given showing that it is possible to get as zero-dilation index each integer value between <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. On the other hand, <span><math><mi>d</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is proved to be equal to the number of nonnegative eigenvalues of <span><math><mo>(</mo><mi>K</mi><mo>+</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Alternative characterizations of <span><math><mi>d</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> are given. The circularity of the numerical range of <span><math><mi>K</mi></math></span> is also considered.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"726 \",\"pages\":\"Pages 91-112\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The zero-dilation index of a matrix A is the largest integer k for which is unitarily similar to A. In this study, the zero-dilation indices of certain block matrices are considered, namely, the block matrix analogues of companion matrices and upper triangular KMS matrices, respectively shown as where and are mn-by-mn and are n-by-n. Provided is nonsingular, it is proved that satisfies the following: if is odd (respectively, is even), then (respectively, ). In the odd m case, examples are given showing that it is possible to get as zero-dilation index each integer value between and . On the other hand, is proved to be equal to the number of nonnegative eigenvalues of . Alternative characterizations of are given. The circularity of the numerical range of is also considered.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.