Linear Algebra and its Applications最新文献

筛选
英文 中文
Generalized matrix functions and some refinement inequalities 广义矩阵函数和一些细化不等式
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-15 DOI: 10.1016/j.laa.2024.10.012
Chaiwat Namnak , Kijti Rodtes
{"title":"Generalized matrix functions and some refinement inequalities","authors":"Chaiwat Namnak ,&nbsp;Kijti Rodtes","doi":"10.1016/j.laa.2024.10.012","DOIUrl":"10.1016/j.laa.2024.10.012","url":null,"abstract":"<div><div>In this short paper, we provide some refinement inequalities on generalized matrix functions. In particular, permanent inequalities concerning doubly stochastic positive semidefinite matrices are also included.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping free resolutions of length three II - Module formats 长度为 3 的自由决议的映射 II - 单元格式
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-11 DOI: 10.1016/j.laa.2024.10.010
Sara Angela Filippini , Lorenzo Guerrieri
{"title":"Mapping free resolutions of length three II - Module formats","authors":"Sara Angela Filippini ,&nbsp;Lorenzo Guerrieri","doi":"10.1016/j.laa.2024.10.010","DOIUrl":"10.1016/j.laa.2024.10.010","url":null,"abstract":"<div><div>Let <em>M</em> be a perfect module of projective dimension 3 over a Gorenstein, local or graded ring <em>R</em>. We denote by <span><math><mi>F</mi></math></span> the minimal free resolution of <em>M</em>. Using the generic ring associated to the format of <span><math><mi>F</mi></math></span> we define higher structure maps, according to the theory developed by Weyman in <span><span>[26]</span></span>. We introduce a generalization of classical linkage for <em>R</em>-module using the Buchsbaum–Rim complex, and study the behavior of structure maps under this Buchsbaum–Rim linkage. In particular, for certain formats we obtain criteria for these <em>R</em>-modules to lie in the Buchsbaum–Rim linkage class of a Buchsbaum–Rim complex of length 3.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reflective block Kaczmarz algorithms for least squares 最小二乘法的反射块 Kaczmarz 算法
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-10 DOI: 10.1016/j.laa.2024.10.009
Changpeng Shao
{"title":"Reflective block Kaczmarz algorithms for least squares","authors":"Changpeng Shao","doi":"10.1016/j.laa.2024.10.009","DOIUrl":"10.1016/j.laa.2024.10.009","url":null,"abstract":"<div><div>In Steinerberger (2021) <span><span>[23]</span></span> and Shao (2023) <span><span>[21]</span></span>, two new types of Kaczmarz algorithms, which share some similarities, for consistent linear systems were proposed. These two algorithms not only compete with many previous Kaczmarz algorithms but, more importantly, reveal some interesting new geometric properties of solutions to linear systems that are not obvious from the standard viewpoint of the Kaczmarz algorithm. In this paper, we comprehensively study these two algorithms. First, we theoretically analyse the algorithms for solving least squares, which is more common in practice. Second, we extend the two algorithms to block versions and provide their rigorous estimate on the convergence rates. Third, as a theoretical complement, we provide more results on properties of the convergence rate. All these results contribute to a more thorough understanding of these algorithms.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong quantum state transfer on graphs via loop edges 通过环边实现图上的强量子态转移
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-10 DOI: 10.1016/j.laa.2024.10.008
Gabor Lippner, Yujia Shi
{"title":"Strong quantum state transfer on graphs via loop edges","authors":"Gabor Lippner,&nbsp;Yujia Shi","doi":"10.1016/j.laa.2024.10.008","DOIUrl":"10.1016/j.laa.2024.10.008","url":null,"abstract":"<div><div>We quantify the effect of weighted loops at the source and target nodes of a graph on the strength of quantum state transfer between these vertices. We give lower bounds on loop weights that guarantee strong transfer fidelity that works for any graph where this protocol is feasible. By considering local spectral symmetry, we show that the required weight size depends only on the maximum degree of the graph and, in some less favorable cases, the distance between vertices. Additionally, we explore the duration for which transfer strength remains above a specified threshold.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the cardinality of matrices with prescribed rank and partial trace over a finite field 论有限域上具有规定秩和部分迹的矩阵的万有引力
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-10 DOI: 10.1016/j.laa.2024.10.011
Kumar Balasubramanian , Krishna Kaipa , Himanshi Khurana
{"title":"On the cardinality of matrices with prescribed rank and partial trace over a finite field","authors":"Kumar Balasubramanian ,&nbsp;Krishna Kaipa ,&nbsp;Himanshi Khurana","doi":"10.1016/j.laa.2024.10.011","DOIUrl":"10.1016/j.laa.2024.10.011","url":null,"abstract":"<div><div>Let <em>F</em> be the finite field of order <em>q</em> and <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be the set of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices of rank <em>r</em> over the field <em>F</em>. For <span><math><mi>α</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>A</mi><mo>∈</mo><mi>M</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, let<span><span><span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>r</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>=</mo><mrow><mo>{</mo><mi>X</mi><mo>∈</mo><mi>M</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>|</mo><mi>Tr</mi><mo>(</mo><mi>A</mi><mi>X</mi><mo>)</mo><mo>=</mo><mi>α</mi><mo>}</mo></mrow><mo>.</mo></math></span></span></span> In this article, we solve the problem of determining the cardinality of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>r</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>. We also solve the generalization of the problem to rectangular matrices.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On affine spaces of rectangular matrices with constant rank 关于恒等矩阵的仿射空间
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-09 DOI: 10.1016/j.laa.2024.10.006
Clément de Seguins Pazzis
{"title":"On affine spaces of rectangular matrices with constant rank","authors":"Clément de Seguins Pazzis","doi":"10.1016/j.laa.2024.10.006","DOIUrl":"10.1016/j.laa.2024.10.006","url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a field, and <span><math><mi>n</mi><mo>≥</mo><mi>p</mi><mo>≥</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn></math></span> be integers. In a recent article, Rubei has determined, when <span><math><mi>F</mi></math></span> is the field of real numbers, the greatest possible dimension for an affine subspace of <em>n</em>–by–<em>p</em> matrices with entries in <span><math><mi>F</mi></math></span> in which all the elements have rank <em>r</em>. In this note, we generalize her result to an arbitrary field with more than <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> elements, and we classify the spaces that reach the maximal dimension as a function of the classification of the affine subspaces of invertible matrices of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> with dimension <span><math><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></math></span>. The latter is known to be connected to the classification of nonisotropic quadratic forms over <span><math><mi>F</mi></math></span> up to congruence.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on an invariant distance of the bidisk 关于双盘不变距离的说明
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-09 DOI: 10.1016/j.laa.2024.10.003
Deepak K. D. , Kenta Kojin , Michio Seto
{"title":"A note on an invariant distance of the bidisk","authors":"Deepak K. D. ,&nbsp;Kenta Kojin ,&nbsp;Michio Seto","doi":"10.1016/j.laa.2024.10.003","DOIUrl":"10.1016/j.laa.2024.10.003","url":null,"abstract":"<div><div>In this short paper, we discuss relation between an invariant distance of the bidisk and Kreĭn space geometry. In particular, an interpolation theorem for rational maps with respect to our invariant distance is proven.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the uniqueness and computation of commuting extensions 关于换向扩展的唯一性和计算
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-09 DOI: 10.1016/j.laa.2024.10.004
Pascal Koiran
{"title":"On the uniqueness and computation of commuting extensions","authors":"Pascal Koiran","doi":"10.1016/j.laa.2024.10.004","DOIUrl":"10.1016/j.laa.2024.10.004","url":null,"abstract":"<div><div>A tuple <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> of matrices of size <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> is said to be a <em>commuting extension</em> of a tuple <span><math><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> of matrices of size <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> if the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> pairwise commute and each <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> sits in the upper left corner of a block decomposition of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (here, <em>r</em> and <em>n</em> are two arbitrary integers with <span><math><mi>n</mi><mo>&lt;</mo><mi>r</mi></math></span>). This notion was discovered and rediscovered in several contexts including algebraic complexity theory (in Strassen's work on tensor rank), in numerical analysis for the construction of cubature formulas and in quantum mechanics for the study of computational methods and the study of the so-called “quantum Zeno dynamics.” Commuting extensions have also attracted the attention of the linear algebra community. In this paper we present 3 types of results:<ul><li><span>(i)</span><span><div>Theorems on the uniqueness of commuting extensions for three matrices or more.</div></span></li><li><span>(ii)</span><span><div>Algorithms for the computation of commuting extensions of minimal size. These algorithms work under the same assumptions as our uniqueness theorems. They are applicable up to <span><math><mi>r</mi><mo>=</mo><mn>4</mn><mi>n</mi><mo>/</mo><mn>3</mn></math></span>, and are apparently the first provably efficient algorithms for this problem applicable beyond <span><math><mi>r</mi><mo>=</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></span></li><li><span>(iii)</span><span><div>A genericity theorem showing that our algorithms and uniqueness theorems can be applied to a wide range of input matrices.</div></span></li></ul></div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cayley transform for Toeplitz and dual matrices 托普利兹矩阵和对偶矩阵的 Cayley 变换
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-09 DOI: 10.1016/j.laa.2024.10.007
Tikesh Verma , Debasisha Mishra , Michael Tsatsomeros
{"title":"Cayley transform for Toeplitz and dual matrices","authors":"Tikesh Verma ,&nbsp;Debasisha Mishra ,&nbsp;Michael Tsatsomeros","doi":"10.1016/j.laa.2024.10.007","DOIUrl":"10.1016/j.laa.2024.10.007","url":null,"abstract":"<div><div>Let an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrix <em>A</em> be such that <span><math><mi>I</mi><mo>+</mo><mi>A</mi></math></span> is invertible. The Cayley transform of <em>A</em>, denoted by <span><math><mi>C</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, is defined as<span><span><span><math><mi>C</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>A</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>.</mo></math></span></span></span> Fallat and Tsatsomeros (2002) <span><span>[5]</span></span> and Mondal et al. (2024) <span><span>[15]</span></span> studied the Cayley transform of a matrix <em>A</em> in the context of P-matrices, H-matrices, M-matrices, totally positive matrices, positive definite matrices, almost skew-Hermitian matrices, and semipositive matrices. In this paper, the investigation of the Cayley transform is continued for Toeplitz matrices, circulant matrices, unipotent matrices, and dual matrices. An expression of the Cayley transform for dual matrices is established. It is shown that the Cayley transform of a dual symmetric matrix is always a dual symmetric matrix. The Cayley transform of a dual skew-symmetric matrix is discussed. The results are illustrated with examples.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Jordan embeddings between block upper-triangular subalgebras via preserving properties 通过保全特性表征块上三角子代数之间的乔丹嵌入
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-10-09 DOI: 10.1016/j.laa.2024.10.005
Ilja Gogić , Tatjana Petek , Mateo Tomašević
{"title":"Characterizing Jordan embeddings between block upper-triangular subalgebras via preserving properties","authors":"Ilja Gogić ,&nbsp;Tatjana Petek ,&nbsp;Mateo Tomašević","doi":"10.1016/j.laa.2024.10.005","DOIUrl":"10.1016/j.laa.2024.10.005","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices. We consider arbitrary subalgebras <span><math><mi>A</mi></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which contain the algebra of all upper-triangular matrices (i.e. block upper-triangular subalgebras), and their Jordan embeddings. We first describe Jordan embeddings <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> as maps of the form <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>X</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an invertible matrix, and then we obtain a simple criteria of when one block upper-triangular subalgebra Jordan-embeds into another (and in that case we describe the form of such embeddings). As a main result, we characterize Jordan embeddings <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>) as continuous injective maps which preserve commutativity and spectrum. We show by counterexamples that all these assumptions are indispensable (unless <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when injectivity is superfluous).</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信