Linear Algebra and its Applications最新文献

筛选
英文 中文
Multilayer crisscross error and erasure correction 多层交叉误差和擦除校正
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-18 DOI: 10.1016/j.laa.2025.09.014
Umberto Martínez-Peñas
{"title":"Multilayer crisscross error and erasure correction","authors":"Umberto Martínez-Peñas","doi":"10.1016/j.laa.2025.09.014","DOIUrl":"10.1016/j.laa.2025.09.014","url":null,"abstract":"<div><div>In this work, multilayer crisscross errors and erasures are considered, which affect entire rows and columns in the matrices of a list of matrices. To measure such errors and erasures, the multi-cover metric is introduced. Several bounds are derived, including a Singleton bound, and maximum multi-cover distance (MMCD) codes are defined as those attaining it. Duality, puncturing and shortening of linear MMCD codes are studied. It is shown that the dual of a linear MMCD code is not necessarily MMCD, and those satisfying this duality condition are defined as dually MMCD codes. Finally, some constructions of codes in the multi-cover metric are given, including dually MMCD codes, together with efficient decoding algorithms for them.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 349-375"},"PeriodicalIF":1.1,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasiorthogonality of commutative algebras, complex Hadamard matrices, and mutually unbiased measurements 交换代数的拟正交性,复哈达玛矩阵和互无偏测量
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-16 DOI: 10.1016/j.laa.2025.09.010
Sooyeong Kim , David Kribs , Edison Lozano , Rajesh Pereira , Sarah Plosker
{"title":"Quasiorthogonality of commutative algebras, complex Hadamard matrices, and mutually unbiased measurements","authors":"Sooyeong Kim ,&nbsp;David Kribs ,&nbsp;Edison Lozano ,&nbsp;Rajesh Pereira ,&nbsp;Sarah Plosker","doi":"10.1016/j.laa.2025.09.010","DOIUrl":"10.1016/j.laa.2025.09.010","url":null,"abstract":"<div><div>We deepen the theory of quasiorthogonal and approximately quasiorthogonal operator algebras through an analysis of the commutative algebra case. We give a new approach to calculate the measure of orthogonality between two such subalgebras of matrices, based on a matrix-theoretic notion we introduce that has a connection to complex Hadamard matrices. We also show how this new tool can yield significant information on the general non-commutative case. We finish by considering quasiorthogonality for the important subclass of commutative algebras that arise from mutually unbiased bases (MUBs) and mutually unbiased measurements (MUMs) in quantum information theory. We present a number of examples throughout the work, including a subclass that arises from group algebras and Latin squares.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 383-408"},"PeriodicalIF":1.1,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized spectral characterization of signed bipartite graphs 符号二部图的广义谱表征
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-10 DOI: 10.1016/j.laa.2025.09.008
Songlin Guo , Wei Wang , Lele Li
{"title":"Generalized spectral characterization of signed bipartite graphs","authors":"Songlin Guo ,&nbsp;Wei Wang ,&nbsp;Lele Li","doi":"10.1016/j.laa.2025.09.008","DOIUrl":"10.1016/j.laa.2025.09.008","url":null,"abstract":"<div><div>Let Σ be an <em>n</em>-vertex controllable or almost controllable signed bipartite graph, and let <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Σ</mi></mrow></msub></math></span> denote the discriminant of its characteristic polynomial <span><math><mi>χ</mi><mo>(</mo><mi>Σ</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>. We prove that if (i) the integer <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></msup><msqrt><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Σ</mi></mrow></msub></mrow></msqrt></math></span> is squarefree, and (ii) the constant term (even <em>n</em>) or linear coefficient (odd <em>n</em>) of <span><math><mi>χ</mi><mo>(</mo><mi>Σ</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> is ±1, then Σ is determined by its generalized spectrum. This result extends a recent theorem of Ji et al. (2025) <span><span>[6]</span></span>, which established a similar criterion for signed trees with irreducible characteristic polynomials.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 331-348"},"PeriodicalIF":1.1,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A family of graphs that are DGS but not DS 属于DGS但不是DS的一组图
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-10 DOI: 10.1016/j.laa.2025.09.009
Limeng Lin , Luiz Emilio Allem , Vilmar Trevisan , Wei Wang , Hao Zhang
{"title":"A family of graphs that are DGS but not DS","authors":"Limeng Lin ,&nbsp;Luiz Emilio Allem ,&nbsp;Vilmar Trevisan ,&nbsp;Wei Wang ,&nbsp;Hao Zhang","doi":"10.1016/j.laa.2025.09.009","DOIUrl":"10.1016/j.laa.2025.09.009","url":null,"abstract":"<div><div>The spectral characterization of graphs is a central theme in spectral graph theory. A graph <em>G</em> is <em>determined by its spectrum</em> (DS) if every graph cospectral with <em>G</em> is also isomorphic to <em>G</em>. The definition is extended to the generalized spectrum, where a graph <em>G</em> is <em>determined by its generalized spectrum</em> (DGS) if any graph <em>H</em> that is cospectral with <em>G</em> and whose complement is cospectral with <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> must be isomorphic to <em>G</em>. While it is clear that all DS graphs are also DGS, the reverse is not always true. This leads to a natural, unanswered question: Which graphs are DGS but not DS? Previous research has focused on identifying graphs that are either DS or DGS, but, to our knowledge, research on this specific problem has not attracted much attention. This paper addresses the problem by introducing an infinite family of graphs that are DGS but not DS.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 283-294"},"PeriodicalIF":1.1,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenvalues and signature of quadratic forms associated with finite topological spaces 有限拓扑空间二次型的特征值与特征
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-09 DOI: 10.1016/j.laa.2025.09.007
Pedro J. Chocano
{"title":"Eigenvalues and signature of quadratic forms associated with finite topological spaces","authors":"Pedro J. Chocano","doi":"10.1016/j.laa.2025.09.007","DOIUrl":"10.1016/j.laa.2025.09.007","url":null,"abstract":"<div><div>Given any finite topological space <em>X</em> and a field <span><math><mi>K</mi></math></span>, we associate a quadratic space <span><math><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span>, consisting of a vector space <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> over <span><math><mi>K</mi></math></span> and a quadratic form <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mi>K</mi></math></span>, to <em>X</em>. The eigenvalues and signature of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> are topological invariants of <em>X</em>. We study their relations with <em>X</em>. From this, we obtain restrictions to check whether a finite topological space can be embedded into another one. Additionally, we compute these invariants for minimal finite models of spheres and other families of finite spaces.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 263-282"},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the incidence matrix of a graph with matrix weights 关于具有矩阵权值的图的关联矩阵
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-08 DOI: 10.1016/j.laa.2025.09.003
Madhab Mondal, Sukanta Pati, Bhaba Kumar Sarma
{"title":"On the incidence matrix of a graph with matrix weights","authors":"Madhab Mondal,&nbsp;Sukanta Pati,&nbsp;Bhaba Kumar Sarma","doi":"10.1016/j.laa.2025.09.003","DOIUrl":"10.1016/j.laa.2025.09.003","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;em&gt;G&lt;/em&gt; be a simple, oriented, edge weighted graph with &lt;em&gt;n&lt;/em&gt; vertices and &lt;em&gt;m&lt;/em&gt; edges, where weights are matrices in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (the set of all square matrices of order &lt;em&gt;s&lt;/em&gt;). It is well-known that if &lt;em&gt;G&lt;/em&gt; is connected and weights are nonzero scalars, then the rank of the &lt;em&gt;vertex-edge incidence matrix&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. We observe that if the weights are rank &lt;em&gt;k&lt;/em&gt; matrices in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;rank&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. In particular, when &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; (i.e., weights as rank one matrices) and &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;rank&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We show that for large values of &lt;em&gt;s&lt;/em&gt;, there exist assignments of rank one weights from &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; such that all integer values between &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;m&lt;/em&gt; can be attained as the rank of &lt;span&gt;&lt;math&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Further, we study the smallest possible values of &lt;em&gt;s&lt;/em&gt; for which these ranks can be attained. Surprisingly, the smallest value of &lt;em&gt;s&lt;/em&gt; for which &lt;em&gt;m&lt;/em&gt; can be achieved as &lt;span&gt;&lt;math&gt;&lt;mi&gt;rank&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; need not be &lt;span&gt;&lt;math&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Even more interestingly, it turns out that the minimum value of &lt;em&gt;s&lt;/em&gt; is the arboricity of the graph, i.e., the least number of colors needed to color the edges of &lt;em&gt;G&lt;/em&gt; so that no cycle is monochromatic. As an extension, we supply an expression of the minimum values of &lt;em&gt;s&lt;/em&gt; for which the intermediate values for the ranks of &lt;span&gt;&lt;math&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; can be achieved. For a graph &lt;em&gt;G&lt;/em&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;rank&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; can give more information on &lt;em&gt;G&lt;/em&gt; if we consider matrix weights. We show that a connected graph &lt;em&gt;G&lt;/em&gt; on &lt;em&gt;n&lt;/em&gt; vertices is a tree if and only if for every assignment of rank one weights from &lt;sp","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 295-319"},"PeriodicalIF":1.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Positive) quadratic determinantal representations of quartic curves and the Robinson polynomial 四次曲线的(正)二次行列式表示和罗宾逊多项式
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-08 DOI: 10.1016/j.laa.2025.09.006
Clemens Brüser, Mario Kummer
{"title":"(Positive) quadratic determinantal representations of quartic curves and the Robinson polynomial","authors":"Clemens Brüser,&nbsp;Mario Kummer","doi":"10.1016/j.laa.2025.09.006","DOIUrl":"10.1016/j.laa.2025.09.006","url":null,"abstract":"<div><div>We prove that every real nonnegative ternary quartic whose complex zero set is smooth can be represented as the determinant of a symmetric matrix with quadratic entries which is everywhere positive semidefinite. We show that the corresponding statement fails for the Robinson polynomial, answering a question by Buckley and Šivic.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 232-262"},"PeriodicalIF":1.1,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145060416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost commuting self-adjoint operators and iterated commutator estimates 几乎可交换自伴随算子和迭代换向子估计
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-05 DOI: 10.1016/j.laa.2025.09.004
Jakob Geisler
{"title":"Almost commuting self-adjoint operators and iterated commutator estimates","authors":"Jakob Geisler","doi":"10.1016/j.laa.2025.09.004","DOIUrl":"10.1016/j.laa.2025.09.004","url":null,"abstract":"<div><div>Given two almost commuting self-adjoint operators, a new method for finding exactly commuting operators is presented. For this, a differential equation for self-adjoint Hilbert-Schmidt operators is introduced. Quantitative results are proven that the exactly commuting operators are close to the old ones in the Hilbert-Schmidt norm. The proof relies on a novel estimate in which the norm of the commutator is bounded from above by the norm of the iterated commutators times a constant. This inequality is proven in finite dimensions and lower bounds for the optimal constants are given.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 388-411"},"PeriodicalIF":1.1,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145018511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hodge operators and groups of isometries of diagonalizable symmetric bilinear forms in characteristic two 特征二可对角对称双线性形式的Hodge算子和等距群
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-04 DOI: 10.1016/j.laa.2025.09.002
Linus Kramer , Markus J. Stroppel
{"title":"Hodge operators and groups of isometries of diagonalizable symmetric bilinear forms in characteristic two","authors":"Linus Kramer ,&nbsp;Markus J. Stroppel","doi":"10.1016/j.laa.2025.09.002","DOIUrl":"10.1016/j.laa.2025.09.002","url":null,"abstract":"<div><div>We study groups of isometries of non-alternating symmetric bilinear forms on vector spaces of characteristic two, and actions of these groups on exterior powers of the space, viewed as modules over algebras generated by Hodge operators.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 211-231"},"PeriodicalIF":1.1,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145045933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Araki-type trace inequalities 关于araki型迹不等式
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-04 DOI: 10.1016/j.laa.2025.08.023
Po-Chieh Liu , Hao-Chung Cheng
{"title":"On Araki-type trace inequalities","authors":"Po-Chieh Liu ,&nbsp;Hao-Chung Cheng","doi":"10.1016/j.laa.2025.08.023","DOIUrl":"10.1016/j.laa.2025.08.023","url":null,"abstract":"<div><div>In this paper, we prove a trace inequality <span><math><mi>Tr</mi><mspace></mspace><mrow><mo>[</mo><mi>f</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>]</mo></mrow><mo>≤</mo><mi>Tr</mi><mo>[</mo><mi>f</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>B</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>]</mo></math></span> for any positive and monotonically increasing function <em>f</em>, <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, and positive semi-definite matrices <em>A</em> and <em>B</em>. On the other hand, if <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and the map <span><math><mi>x</mi><mo>↦</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is positive and decreasing, then <span><math><mi>Tr</mi><mo>[</mo><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mi>B</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>]</mo><mo>≤</mo><mi>Tr</mi><mspace></mspace><mrow><mo>[</mo><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>]</mo></mrow></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 320-330"},"PeriodicalIF":1.1,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信