On indefinite-inner-product spaces induced by non-zero-scaled hypercomplex numbers

IF 1.1 3区 数学 Q1 MATHEMATICS
Daniel Alpay , Ilwoo Cho
{"title":"On indefinite-inner-product spaces induced by non-zero-scaled hypercomplex numbers","authors":"Daniel Alpay ,&nbsp;Ilwoo Cho","doi":"10.1016/j.laa.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a new type of adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> on the algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of all <em>t</em>-scaled hypercomplex numbers over the real field <span><math><mi>R</mi></math></span>, for all “non-zero” scales <span><math><mi>t</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>. We show that such a <span><math><mi>R</mi></math></span>-adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> generates a well-defined indefinite inner product <span><math><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, inducing a complete indefinite inner product space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> over <span><math><mi>R</mi></math></span>. Analysis and operator theory on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is considered up to this adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>. As application, by regarding <em>t</em>-scaled hypercomplex numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as embedded subset <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>, the corresponding (usual operator-theoretic) spectral theory on <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> is studied (over the complex field <span><math><mi>C</mi></math></span>). And we study relations between these usual spectral-theoretic results and the operator-theoretic results obtained from the <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>-depending structures; and then the free distributions of self-adjoint matrices of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> are characterized up to the normalized trace <em>τ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 99-161"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002460","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a new type of adjoint [] on the algebra Ht of all t-scaled hypercomplex numbers over the real field R, for all “non-zero” scales tR{0}. We show that such a R-adjoint [] generates a well-defined indefinite inner product [,]t on Ht, inducing a complete indefinite inner product space Ht=(Ht,[,]t) over R. Analysis and operator theory on Ht is considered up to this adjoint []. As application, by regarding t-scaled hypercomplex numbers of Ht as embedded subset M2t of M2(C), the corresponding (usual operator-theoretic) spectral theory on M2t is studied (over the complex field C). And we study relations between these usual spectral-theoretic results and the operator-theoretic results obtained from the []-depending structures; and then the free distributions of self-adjoint matrices of M2t are characterized up to the normalized trace τ on M2(C).
非零标度超复数诱导的不定内积空间
在本文中,我们考虑了实域R上所有t尺度超复数的代数Ht上的一类新的伴随[j],对于所有“非零”尺度t∈R∈{0}。我们证明了这样一个r伴随[j]在t上产生了一个定义良好的不定内积[,]t,并在r上导出了一个完备的不定内积空间Ht=(Ht,[,]t)。作为应用,将Ht的t尺度超复数作为M2(C)的嵌入子集M2t,研究了M2t上(复域C上)对应的(通常算符理论)谱理论。并研究了这些通常的谱理论结果与从[]依赖结构中得到的算子理论结果之间的关系;然后将M2t的自伴随矩阵的自由分布表征为M2(C)上的归一化迹τ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信