{"title":"On indefinite-inner-product spaces induced by non-zero-scaled hypercomplex numbers","authors":"Daniel Alpay , Ilwoo Cho","doi":"10.1016/j.laa.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a new type of adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> on the algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of all <em>t</em>-scaled hypercomplex numbers over the real field <span><math><mi>R</mi></math></span>, for all “non-zero” scales <span><math><mi>t</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>. We show that such a <span><math><mi>R</mi></math></span>-adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> generates a well-defined indefinite inner product <span><math><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, inducing a complete indefinite inner product space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> over <span><math><mi>R</mi></math></span>. Analysis and operator theory on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is considered up to this adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>. As application, by regarding <em>t</em>-scaled hypercomplex numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as embedded subset <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>, the corresponding (usual operator-theoretic) spectral theory on <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> is studied (over the complex field <span><math><mi>C</mi></math></span>). And we study relations between these usual spectral-theoretic results and the operator-theoretic results obtained from the <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>-depending structures; and then the free distributions of self-adjoint matrices of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> are characterized up to the normalized trace <em>τ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 99-161"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002460","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a new type of adjoint on the algebra of all t-scaled hypercomplex numbers over the real field , for all “non-zero” scales . We show that such a -adjoint generates a well-defined indefinite inner product on , inducing a complete indefinite inner product space over . Analysis and operator theory on is considered up to this adjoint . As application, by regarding t-scaled hypercomplex numbers of as embedded subset of , the corresponding (usual operator-theoretic) spectral theory on is studied (over the complex field ). And we study relations between these usual spectral-theoretic results and the operator-theoretic results obtained from the -depending structures; and then the free distributions of self-adjoint matrices of are characterized up to the normalized trace τ on .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.