Linear Algebra and its Applications最新文献

筛选
英文 中文
Integrable modules of map full Toroidal Lie algebras 映射满环面李代数的可积模
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-03 DOI: 10.1016/j.laa.2025.08.022
Pradeep Bisht, Punita Batra
{"title":"Integrable modules of map full Toroidal Lie algebras","authors":"Pradeep Bisht,&nbsp;Punita Batra","doi":"10.1016/j.laa.2025.08.022","DOIUrl":"10.1016/j.laa.2025.08.022","url":null,"abstract":"<div><div>In this paper, we study the irreducible objects of the category <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span> of integrable representations for map full Toroidal Lie algebras with finite-dimensional weight spaces. These representations turn out to be single point evaluation modules and hence are irreducible-integrable modules for the underlying full Toroidal algebras.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 161-185"},"PeriodicalIF":1.1,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145018442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Norm orthogonal bases and invariants of p-adic lattices p进格的范数正交基与不变量
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-03 DOI: 10.1016/j.laa.2025.09.001
Chi Zhang , Yingpu Deng , Zhaonan Wang
{"title":"Norm orthogonal bases and invariants of p-adic lattices","authors":"Chi Zhang ,&nbsp;Yingpu Deng ,&nbsp;Zhaonan Wang","doi":"10.1016/j.laa.2025.09.001","DOIUrl":"10.1016/j.laa.2025.09.001","url":null,"abstract":"<div><div>In 2018, the Longest Vector Problem (LVP) and the Closest Vector Problem (CVP) in <em>p</em>-adic lattices were introduced. These problems are closely linked to the orthogonalization process. In this paper, we first prove that every <em>p</em>-adic lattice has an orthogonal basis respect to any given norm, whereas lattices in Euclidean spaces lack such bases in general. It is an improvement on Weil's result. Then, we prove that the sorted norm sequence of orthogonal basis of a <em>p</em>-adic lattice is unique and give definitions to the successive maxima and the escape distance, as the <em>p</em>-adic analogues of the successive minima and the covering radius in Euclidean lattices. Finally, we present deterministic polynomial time algorithms designed for the orthogonalization process, addressing both the LVP and the CVP with the help of an orthogonal basis of the whole vector space.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 186-210"},"PeriodicalIF":1.1,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145018443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equality in some symplectic eigenvalue inequalities 一些辛特征值不等式中的等式
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-01 DOI: 10.1016/j.laa.2025.08.021
Hemant K. Mishra
{"title":"Equality in some symplectic eigenvalue inequalities","authors":"Hemant K. Mishra","doi":"10.1016/j.laa.2025.08.021","DOIUrl":"10.1016/j.laa.2025.08.021","url":null,"abstract":"<div><div>In the last decade, numerous works have investigated several properties of symplectic eigenvalues. Remarkably, the results on symplectic eigenvalues have been found to be analogous to those of eigenvalues of Hermitian matrices with appropriate interpretations. In particular, symplectic analogs of famous eigenvalue inequalities are known today such as Weyl's inequalities, Lidskii's inequalities, and Schur–Horn majorization inequalities. In this paper, we provide necessary and sufficient conditions for equality in the symplectic analogs of the aforementioned inequalities.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 141-160"},"PeriodicalIF":1.1,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145010493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Numerical methods for eigenvalues of singular polynomial eigenvalue problems” [Linear Algebra Appl. 719 (2025) 1–33] “奇异多项式特征值问题的数值方法”的勘误表[线性代数应用,719 (2025)1-33]
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-09-01 DOI: 10.1016/j.laa.2025.08.020
Michiel E. Hochstenbach , Christian Mehl , Bor Plestenjak
{"title":"Corrigendum to “Numerical methods for eigenvalues of singular polynomial eigenvalue problems” [Linear Algebra Appl. 719 (2025) 1–33]","authors":"Michiel E. Hochstenbach ,&nbsp;Christian Mehl ,&nbsp;Bor Plestenjak","doi":"10.1016/j.laa.2025.08.020","DOIUrl":"10.1016/j.laa.2025.08.020","url":null,"abstract":"","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 385-387"},"PeriodicalIF":1.1,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144922872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrices with exactly one real positive eigenvalue and the rest having negative or non-positive real parts 矩阵只有一个实的正特征值,其余的有负的或非正的实部
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-08-29 DOI: 10.1016/j.laa.2025.08.019
Zhibing Chen , Xuerong Yong
{"title":"Matrices with exactly one real positive eigenvalue and the rest having negative or non-positive real parts","authors":"Zhibing Chen ,&nbsp;Xuerong Yong","doi":"10.1016/j.laa.2025.08.019","DOIUrl":"10.1016/j.laa.2025.08.019","url":null,"abstract":"<div><div>An <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> real or complex matrix <em>A</em> is called elliptic if it has exactly one real positive eigenvalue and all of its other eigenvalues have non-positive real parts. The real symmetric elliptic matrices were recently discussed extensively in <span><span>[4]</span></span>, <span><span>[16]</span></span>, <span><span>[19]</span></span>, <span><span>[24]</span></span> and have provided many interesting results and applications. However, when the system gets perturbed, the corresponding matrix will no longer be symmetric and such a class of matrices appears in many areas of applied mathematics and sciences. In this paper we study the general real or complex elliptic matrices. We first establish a criterion based on the Hurwitz's sequence of determinants similar to the Routh-Hurwitz's theorem on stable matrices and discuss elliptic matrices from their characteristic polynomials. We then discover that the real or complex elliptic matrices bear close relations with the <em>PN</em>-matrices and the <em>SPN</em>-matrices that appear in the trade theory of economics <span><span>[3]</span></span>, <span><span>[9]</span></span>, <span><span>[11]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 121-140"},"PeriodicalIF":1.1,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144989170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jordan degree type for codimension three Gorenstein algebras of small Sperner number 小Sperner数的余维三Gorenstein代数的Jordan度型
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-08-27 DOI: 10.1016/j.laa.2025.08.018
Nancy Abdallah , Nasrin Altafi , Anthony Iarrobino , Joachim Yaméogo
{"title":"Jordan degree type for codimension three Gorenstein algebras of small Sperner number","authors":"Nancy Abdallah ,&nbsp;Nasrin Altafi ,&nbsp;Anthony Iarrobino ,&nbsp;Joachim Yaméogo","doi":"10.1016/j.laa.2025.08.018","DOIUrl":"10.1016/j.laa.2025.08.018","url":null,"abstract":"<div><div>The Jordan type <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> of a linear form <em>ℓ</em> acting on a graded Artinian algebra <em>A</em> over a field <span><math><mi>k</mi></math></span> is the partition describing the Jordan block decomposition of the multiplication map <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>, which is nilpotent. The Jordan degree type <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> is a finer invariant, describing also the initial degrees of the simple submodules of <em>A</em> in a decomposition of <em>A</em> as a direct sum of <span><math><mi>k</mi><mo>[</mo><mi>ℓ</mi><mo>]</mo></math></span>-modules. The set of Jordan types of <em>A</em> or Jordan degree types (JDT) of <em>A</em> as <em>ℓ</em> varies, is an invariant of the algebra. This invariant has been studied for codimension two graded algebras. We here extend the previous results to certain codimension three graded Artinian Gorenstein (AG) algebras - those of small Sperner number. Given a Gorenstein sequence <em>T</em> - one possible for the Hilbert function of a codimension three graded AG algebra - the irreducible variety <span><math><mrow><mi>Gor</mi></mrow><mo>(</mo><mi>T</mi><mo>)</mo></math></span> parametrizes all Gorenstein algebras of Hilbert function <em>T</em>. We here completely determine the JDT possible for all pairs <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo><mo>,</mo><mi>A</mi><mo>∈</mo><mrow><mi>Gor</mi></mrow><mo>(</mo><mi>T</mi><mo>)</mo></math></span>, for Gorenstein sequences <em>T</em> of the form <span><math><mi>T</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>,</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> for Sperner number <span><math><mi>s</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span> and arbitrary multiplicity <em>k</em>. For <span><math><mi>s</mi><mo>=</mo><mn>6</mn></math></span> we delimit the prospective JDT, without verifying that each occurs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 82-120"},"PeriodicalIF":1.1,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144933354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signed graphs Gσ with nullity n(Gσ)−g(Gσ)−1 零为n(Gσ)−g(Gσ)−1的符号图Gσ
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-08-26 DOI: 10.1016/j.laa.2025.08.017
Suliman Khan
{"title":"Signed graphs Gσ with nullity n(Gσ)−g(Gσ)−1","authors":"Suliman Khan","doi":"10.1016/j.laa.2025.08.017","DOIUrl":"10.1016/j.laa.2025.08.017","url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>=</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> be a signed graph of order <span><math><mi>n</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>. Let denote the girth, rank, and nullity of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> by <span><math><mi>g</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>r</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>, and <span><math><mi>η</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>, respectively. Recently, Chang and Li (2022) <span><span>[6]</span></span>, characterized connected graphs <em>G</em> with nullity <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. In this paper, we extend the results of Chang and Li to the setting of signed graphs with some new improvements. Furthermore, we characterize signed graphs <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> that satisfy the nullity conditions <span><math><mi>η</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>=</mo><mi>n</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>=</mo><mi>n</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>−</mo><mn>2</mn></math></span>, providing distinct characterization from those of Q. Wu et al. (2022).</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 47-62"},"PeriodicalIF":1.1,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144913822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic frames in finite-dimensional Hilbert spaces 有限维希尔伯特空间中的循环系
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-08-25 DOI: 10.1016/j.laa.2025.08.016
Ole Christensen , Navneet Redhu , Niraj K. Shukla
{"title":"Cyclic frames in finite-dimensional Hilbert spaces","authors":"Ole Christensen ,&nbsp;Navneet Redhu ,&nbsp;Niraj K. Shukla","doi":"10.1016/j.laa.2025.08.016","DOIUrl":"10.1016/j.laa.2025.08.016","url":null,"abstract":"<div><div>Generalizing a definition by Kalra <span><span>[10]</span></span>, the purpose of this paper is to analyze cyclic frames in finite-dimensional Hilbert spaces. Cyclic frames form a subclass of the dynamical frames introduced and analyzed in detail by Aldroubi et al. in <span><span>[1]</span></span> and subsequent papers; they are particularly interesting due to their attractive properties in the context of erasure problems. By applying an alternative approach, we are able to shed new light on general dynamical frames as well as cyclic frames. In particular, we provide a characterization of dynamical frames, which in turn leads to a characterization of cyclic frames.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 63-81"},"PeriodicalIF":1.1,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On an inverse tridiagonal eigenvalue problem and its application to synchronization of network motion 一个逆三对角特征值问题及其在网络运动同步中的应用
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-08-22 DOI: 10.1016/j.laa.2025.08.015
Luca Dieci , Cinzia Elia , Alessandro Pugliese
{"title":"On an inverse tridiagonal eigenvalue problem and its application to synchronization of network motion","authors":"Luca Dieci ,&nbsp;Cinzia Elia ,&nbsp;Alessandro Pugliese","doi":"10.1016/j.laa.2025.08.015","DOIUrl":"10.1016/j.laa.2025.08.015","url":null,"abstract":"<div><div>In this work, motivated by the study of stability of the synchronous orbit of a network with tridiagonal Laplacian matrix, we first solve an inverse eigenvalue problem which builds a tridiagonal Laplacian matrix with eigenvalues <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> and null-vector <figure><img></figure>. Then, we show how this result can be used to guarantee –if possible– that a synchronous orbit of a connected tridiagonal network associated to the matrix <em>L</em> above is asymptotically stable, in the sense of having an associated negative Master Stability Function (MSF). We further show that there are limitations when we also impose symmetry for <em>L</em>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 26-46"},"PeriodicalIF":1.1,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144913821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete quantum walks with marked vertices and their average vertex mixing matrices 具有标记顶点的离散量子行走及其平均顶点混合矩阵
IF 1.1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-08-21 DOI: 10.1016/j.laa.2025.08.013
Amulya Mohan, Hanmeng Zhan
{"title":"Discrete quantum walks with marked vertices and their average vertex mixing matrices","authors":"Amulya Mohan,&nbsp;Hanmeng Zhan","doi":"10.1016/j.laa.2025.08.013","DOIUrl":"10.1016/j.laa.2025.08.013","url":null,"abstract":"<div><div>We study the discrete quantum walk on a regular graph <em>X</em> that assigns negative identity coins to marked vertices <em>S</em> and Grover coins to the unmarked ones. We find combinatorial bases for the eigenspaces of the transition matrix, and derive a formula for the average vertex mixing matrix <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>.</div><div>We then find bounds for entries in <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, and study when these bounds are tight. In particular, the average probabilities between marked vertices are lower bounded by a matrix determined by the induced subgraph <span><math><mi>X</mi><mo>[</mo><mi>S</mi><mo>]</mo></math></span>, the vertex-deleted subgraph <span><math><mi>X</mi><mo>﹨</mo><mi>S</mi></math></span>, and the edge deleted subgraph <span><math><mi>X</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We show this bound is achieved if and only if the marked vertices have walk-equitable neighborhoods in the vertex-deleted subgraph. Finally, for quantum walks attaining this bound, we determine when <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>[</mo><mi>S</mi><mo>,</mo><mi>S</mi><mo>]</mo></math></span> is symmetric, positive semidefinite or uniform.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 336-367"},"PeriodicalIF":1.1,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信