Linear Algebra and its Applications最新文献

筛选
英文 中文
Combinatorial explanation of coefficients of the signless Laplacian characteristic polynomial of a digraph
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-18 DOI: 10.1016/j.laa.2025.03.010
Jingyuan Zhang , Xian'an Jin , Weigen Yan
{"title":"Combinatorial explanation of coefficients of the signless Laplacian characteristic polynomial of a digraph","authors":"Jingyuan Zhang , Xian'an Jin , Weigen Yan","doi":"10.1016/j.laa.2025.03.010","DOIUrl":"10.1016/j.laa.2025.03.010","url":null,"abstract":"<div><div>Let <em>G</em> be a simple digraph with <em>n</em> vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote the adjacency matrix and the in-degree matrix of <em>G</em> by <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span> and <span><math><mi>D</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>⋯</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span>, respectively, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span> is an arc of <em>G</em> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> otherwise, and <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is the number of arcs with head <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>. Set <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>x</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>D</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msup></math></span>, where <span><math><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denotes the determinant of a square matrix <em>X</em>. Then <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> is called the signless Laplacian characteristic polynomial of the digraph <em>G</em>. Li, Lu, Wang and Wang (2023) <span><span>[7]</span></span> gave a combinatorial explanation of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we give combinatorial explanations of all the coefficient","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"717 ","pages":"Pages 56-67"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the limit points of the smallest positive eigenvalues of graphs
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-14 DOI: 10.1016/j.laa.2025.03.006
Sasmita Barik, Debabrota Mondal
{"title":"On the limit points of the smallest positive eigenvalues of graphs","authors":"Sasmita Barik,&nbsp;Debabrota Mondal","doi":"10.1016/j.laa.2025.03.006","DOIUrl":"10.1016/j.laa.2025.03.006","url":null,"abstract":"<div><div>In 1972, Hoffman <span><span>[11]</span></span> initiated the study of limit points of eigenvalues of nonnegative symmetric integer matrices. He posed the question of finding all limit points of the set of spectral radii of all nonnegative symmetric integer matrices. In the same article, the author demonstrated that it is enough to consider the adjacency matrices of simple graphs to study the limit points of spectral radii. Since then, many researchers have worked on similar problems, considering various specific eigenvalues such as the least eigenvalue, the <em>k</em>th largest eigenvalue, and the <em>k</em>th smallest eigenvalue, among others. Motivated by this, we ask the question, “which real numbers are the limit points of the set of the smallest positive eigenvalues (respectively, the largest negative eigenvalues) of graphs?” In this article, we provide a complete answer to this question by proving that any nonnegative (respectively, nonpositive) real number is a limit point of the set of all smallest positive eigenvalues (respectively, largest negative eigenvalues) of graphs. We also show that the union of the sets of limit points of the smallest positive eigenvalues and the largest negative eigenvalues of graphs is dense in <span><math><mi>R</mi></math></span>, the set of all real numbers.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"715 ","pages":"Pages 1-16"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unitary similarity and the numerical radius preservers
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-14 DOI: 10.1016/j.laa.2025.03.005
Abdellatif Bourhim , Mohamed Mabrouk
{"title":"Unitary similarity and the numerical radius preservers","authors":"Abdellatif Bourhim ,&nbsp;Mohamed Mabrouk","doi":"10.1016/j.laa.2025.03.005","DOIUrl":"10.1016/j.laa.2025.03.005","url":null,"abstract":"<div><div>Let <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> be the algebra of all bounded linear operators acting on a separable infinite-dimensional complex Hilbert space <span><math><mi>H</mi></math></span>, and denote by <span><math><mi>w</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> the numerical radius of any operator <span><math><mi>T</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. In this paper, we describe the form of all bijective linear maps <em>ϕ</em> on <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for which <span><math><mi>w</mi><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>=</mo><mi>w</mi><mo>(</mo><mi>ϕ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>)</mo></math></span> whenever <span><math><mi>T</mi><mo>,</mo><mspace></mspace><mi>S</mi><mo>∈</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> are two unitarily similar operators.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"714 ","pages":"Pages 15-27"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Christensen-Sinclair factorization via semidefinite programming
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-14 DOI: 10.1016/j.laa.2025.03.007
Francisco Escudero-Gutiérrez
{"title":"Christensen-Sinclair factorization via semidefinite programming","authors":"Francisco Escudero-Gutiérrez","doi":"10.1016/j.laa.2025.03.007","DOIUrl":"10.1016/j.laa.2025.03.007","url":null,"abstract":"<div><div>We show that the Christensen-Sinclair factorization theorem, when the underlying Hilbert spaces are finite dimensional, is an instance of strong duality of semidefinite programming. This gives an elementary proof of the result and also provides an efficient algorithm to compute the Christensen-Sinclair factorization.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"714 ","pages":"Pages 28-44"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interval global optimization problem in max-plus algebra
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-14 DOI: 10.1016/j.laa.2025.03.009
Helena Myšková, Ján Plavka
{"title":"Interval global optimization problem in max-plus algebra","authors":"Helena Myšková,&nbsp;Ján Plavka","doi":"10.1016/j.laa.2025.03.009","DOIUrl":"10.1016/j.laa.2025.03.009","url":null,"abstract":"<div><div>Consider the global optimization problem of minimizing the max-plus product <span><math><mi>A</mi><mo>⊗</mo><mi>x</mi></math></span>, where <em>A</em> is a given matrix and the constraint set is the set of column vectors <em>x</em> such that the sum of products <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mspace></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is equal to <em>c</em> and <em>c</em> is a given positive real constant, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are non-negative numbers with sum equal to 1. We show that the solvability of the given global optimization problem is independent of the number <em>c</em> if the components of the vector <em>x</em> can also be negative. From a practical point of view, we further consider the solvability of the global optimization problem with non-negative constraints. We propose an algorithm which decides whether a given problem is solvable, extend the problem to interval matrices and provide an algorithm to verify the solvability of interval global optimization problem.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"714 ","pages":"Pages 45-63"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isometries of the qubit state space with respect to quantum Wasserstein distances
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-13 DOI: 10.1016/j.laa.2025.03.004
Richárd Simon , Dániel Virosztek
{"title":"Isometries of the qubit state space with respect to quantum Wasserstein distances","authors":"Richárd Simon ,&nbsp;Dániel Virosztek","doi":"10.1016/j.laa.2025.03.004","DOIUrl":"10.1016/j.laa.2025.03.004","url":null,"abstract":"<div><div>In this paper we study isometries of quantum Wasserstein distances and divergences on the quantum bit state space. We describe isometries with respect to the symmetric quantum Wasserstein divergence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mtext>sym</mtext></mrow></msub></math></span>, the divergence induced by all of the Pauli matrices. We also give a complete characterization of isometries with respect to <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, the quantum Wasserstein distance corresponding to the single Pauli matrix <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"714 ","pages":"Pages 1-14"},"PeriodicalIF":1.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structured backward errors for special classes of saddle point problems with applications
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-10 DOI: 10.1016/j.laa.2025.03.003
Sk. Safique Ahmad, Pinki Khatun
{"title":"Structured backward errors for special classes of saddle point problems with applications","authors":"Sk. Safique Ahmad,&nbsp;Pinki Khatun","doi":"10.1016/j.laa.2025.03.003","DOIUrl":"10.1016/j.laa.2025.03.003","url":null,"abstract":"<div><div>In the realm of numerical analysis, the study of structured backward errors (<em>BEs</em>) in saddle point problems (<em>SPPs</em>) has shown promising potential for development. However, these investigations overlook the inherent sparsity pattern of the coefficient matrix of the <em>SPP</em>. Moreover, the existing techniques are not applicable when the block matrices have <em>circulant</em>, <em>Toeplitz</em>, or <em>symmetric</em>-<em>Toeplitz</em> structures and do not even provide structure-preserving minimal perturbation matrices for which the <em>BE</em> is attained. To overcome these limitations, we investigate the structured <em>BEs</em> of <em>SPPs</em> when the perturbation matrices exploit the sparsity pattern as well as <em>circulant</em>, <em>Toeplitz</em>, and <em>symmetric</em>-<em>Toeplitz</em> structures. Furthermore, we construct minimal perturbation matrices that preserve the sparsity pattern and the aforementioned structures. Applications of the developed frameworks are utilized to compute <em>BEs</em> for the weighted regularized least squares problem. Finally, numerical experiments are performed to validate our findings, showcasing the utility of the obtained structured <em>BEs</em> in assessing the strong backward stability of numerical algorithms.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"713 ","pages":"Pages 90-112"},"PeriodicalIF":1.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The full P-vertex problem for unicyclic graphs
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-06 DOI: 10.1016/j.laa.2025.02.024
A. Howlader, P.R. Raickwade, K.C. Sivakumar
{"title":"The full P-vertex problem for unicyclic graphs","authors":"A. Howlader,&nbsp;P.R. Raickwade,&nbsp;K.C. Sivakumar","doi":"10.1016/j.laa.2025.02.024","DOIUrl":"10.1016/j.laa.2025.02.024","url":null,"abstract":"<div><div>Let <em>A</em> be a real symmetric and nonsingular matrix and <em>G</em> be the underlying graph. Let <span><math><mi>A</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> be the principal submatrix obtained by removing the <span><math><msup><mrow><mi>i</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span> row and the <span><math><msup><mrow><mi>i</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span> column of <em>A</em>. If the nullity of <span><math><mi>A</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> is unity, then the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is called a P-vertex of the matrix <em>A</em>. The full P-vertex problem is to determine if there is a nonsingular matrix <em>A</em> such that each vertex of the corresponding graph <em>G</em>, is a P-vertex of <em>A</em>. In this article, we investigate the full P-vertex problem for unicyclic graphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"713 ","pages":"Pages 74-89"},"PeriodicalIF":1.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between discretization and controllability of linear delay systems: An algebraic viewpoint
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-03-03 DOI: 10.1016/j.laa.2025.02.025
Florentina Nicolau , Hugues Mounier , Silviu-Iulian Niculescu
{"title":"Interplay between discretization and controllability of linear delay systems: An algebraic viewpoint","authors":"Florentina Nicolau ,&nbsp;Hugues Mounier ,&nbsp;Silviu-Iulian Niculescu","doi":"10.1016/j.laa.2025.02.025","DOIUrl":"10.1016/j.laa.2025.02.025","url":null,"abstract":"<div><div>In this paper, we give an in depth study of linear delay systems controllability preservation/alteration through discretization. We make use of a module theoretic framework acting as a unifying one for most of the existing delay system controllability notions. We propose a formal generic definition of a discretization scheme and illustrate through examples that controllability properties may be lost through discretization. Then, we introduce the notion of preservation (that is, a measure of quantifying the ability of the discretizer to preserve controllability properties) and prove that for a given discretizer, we can always find a delay system for which even the torsion-free controllability (which is the weakest controllability notion) is not preserved. Finally, we reverse the situation, and show that for any given delay system, preserving discretizers exist.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"713 ","pages":"Pages 18-73"},"PeriodicalIF":1.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-generation of traceless matrices over finite fields
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-02-28 DOI: 10.1016/j.laa.2025.02.023
Omer Cantor , Urban Jezernik , Andoni Zozaya
{"title":"Two-generation of traceless matrices over finite fields","authors":"Omer Cantor ,&nbsp;Urban Jezernik ,&nbsp;Andoni Zozaya","doi":"10.1016/j.laa.2025.02.023","DOIUrl":"10.1016/j.laa.2025.02.023","url":null,"abstract":"<div><div>We prove that the Lie algebra <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> of traceless matrices over a finite field of characteristic <em>p</em> can be generated by 2 elements with exceptions when <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> is <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> or <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. In the latter cases, we establish curious identities that obstruct 2-generation.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"713 ","pages":"Pages 1-17"},"PeriodicalIF":1.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143547843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信