Linear Algebra and its Applications最新文献

筛选
英文 中文
Additive maps preserving rank-bounded sets of matrices
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-17 DOI: 10.1016/j.laa.2025.01.018
E. Akhmedova , A. Guterman , I. Spiridonov
{"title":"Additive maps preserving rank-bounded sets of matrices","authors":"E. Akhmedova ,&nbsp;A. Guterman ,&nbsp;I. Spiridonov","doi":"10.1016/j.laa.2025.01.018","DOIUrl":"10.1016/j.laa.2025.01.018","url":null,"abstract":"<div><div>Let <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> be integers and <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> be the linear space of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices over a field <span><math><mi>F</mi></math></span> of characteristic different from 2. Denote by <span><math><msup><mrow><mi>Γ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msup></math></span> the set of matrices in <span><math><msub><mrow><mi>Mat</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> of rank greater than or equal to <em>k</em>. The main goal of the present paper is to obtain a characterization of additive maps <span><math><mi>f</mi><mo>:</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>Mat</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> satisfying <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>Γ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msup><mo>)</mo><mo>=</mo><msup><mrow><mi>Γ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msup></math></span> with either <span><math><mi>n</mi><mo>&lt;</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></math></span> or <span><math><mi>F</mi></math></span> has characteristic <span><math><mrow><mi>char</mi><mspace></mspace></mrow><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> or <span><math><mrow><mi>char</mi><mspace></mspace></mrow><mo>(</mo><mi>F</mi><mo>)</mo><mo>≥</mo><mi>k</mi></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 331-341"},"PeriodicalIF":1.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cone-preserving solution to a nonsymmetric Riccati equation
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-17 DOI: 10.1016/j.laa.2025.01.020
Emil Vladu, Anders Rantzer
{"title":"A cone-preserving solution to a nonsymmetric Riccati equation","authors":"Emil Vladu,&nbsp;Anders Rantzer","doi":"10.1016/j.laa.2025.01.020","DOIUrl":"10.1016/j.laa.2025.01.020","url":null,"abstract":"<div><div>In this paper, we provide the following simple equivalent condition for a nonsymmetric Algebraic Riccati Equation to admit a stabilizing cone-preserving solution: an associated coefficient matrix must be stable. The result holds under the assumption that said matrix be cross-positive on a proper cone, and it both extends and completes a corresponding sufficient condition for nonnegative matrices in the literature. Further, key to showing the above is the following result which we also provide: in order for a monotonically increasing sequence of cone-preserving matrices to converge, it is sufficient to be bounded above in a single vectorial direction.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 449-459"},"PeriodicalIF":1.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On symmetric hollow integer matrices with eigenvalues bounded from below
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-17 DOI: 10.1016/j.laa.2025.01.021
Zilin Jiang (姜子麟)
{"title":"On symmetric hollow integer matrices with eigenvalues bounded from below","authors":"Zilin Jiang (姜子麟)","doi":"10.1016/j.laa.2025.01.021","DOIUrl":"10.1016/j.laa.2025.01.021","url":null,"abstract":"<div><div>A hollow matrix is a square matrix whose diagonal entries are all equal to zero. Define <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>≈</mo><mn>2.01980</mn></math></span>, where <em>ρ</em> is the unique real root of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mi>x</mi><mo>+</mo><mn>1</mn></math></span>. We show that for every <span><math><mi>λ</mi><mo>&lt;</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, there exists <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> such that if a symmetric hollow integer matrix has an eigenvalue less than −<em>λ</em>, then one of its principal submatrices of order at most <em>n</em> does as well. However, the same conclusion does not hold for any <span><math><mi>λ</mi><mo>≥</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 233-240"},"PeriodicalIF":1.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Nevanlinna formula for matrix Nevanlinna-Pick interpolation
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-17 DOI: 10.1016/j.laa.2025.01.007
Yury Dyukarev
{"title":"The Nevanlinna formula for matrix Nevanlinna-Pick interpolation","authors":"Yury Dyukarev","doi":"10.1016/j.laa.2025.01.007","DOIUrl":"10.1016/j.laa.2025.01.007","url":null,"abstract":"<div><div>In this paper, we study the matrix Nevanlinna-Pick interpolation problem in the completely indeterminate case. We obtain an explicit formula for the resolvent matrix in terms of rational matrix functions of the first and second kind. Additionally, we describe the set of all solutions to the matrix Nevanlinna-Pick interpolation problem using linear fractional transformations applied to Nevanlinna pairs. This result can be viewed as an analogue of the Nevanlinna formula for the matrix Hamburger moment problem.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 241-270"},"PeriodicalIF":1.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pareto singular values of Boolean matrices and analysis of bipartite graphs
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-16 DOI: 10.1016/j.laa.2025.01.015
Alberto Seeger , David Sossa
{"title":"Pareto singular values of Boolean matrices and analysis of bipartite graphs","authors":"Alberto Seeger ,&nbsp;David Sossa","doi":"10.1016/j.laa.2025.01.015","DOIUrl":"10.1016/j.laa.2025.01.015","url":null,"abstract":"<div><div>The complementarity eigenvalues of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, which are defined as the Pareto eigenvalues of the adjacency matrix <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, provide a rich information on structural properties of the graph. Complementarity eigenvalues are of special relevance for connected graphs. For instance, it has been conjectured that the complementarity eigenvalues of a connected graph determine the graph up to isomorphism. Analogously, the Pareto singular values of the biadjacency matrix <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> of a connected bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>U</mi><mo>,</mo><mi>W</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> reflect various structural properties of the bipartite graph under consideration. The theory of Pareto singular values of general matrices was initiated in our paper entitled <em>Cone-constrained singular value problems</em> published in the Journal of Convex Analysis (30, 2023, pp. 1285-1306). In this work we explore various aspects of such a theory, paying special attention to Pareto singular values of Boolean matrices and their role in the analysis of bipartite graphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 164-188"},"PeriodicalIF":1.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sufficient conditions for total positivity, compounds, and Dodgson condensation
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-16 DOI: 10.1016/j.laa.2025.01.016
Shaun Fallat , Himanshu Gupta , Charles R. Johnson
{"title":"Sufficient conditions for total positivity, compounds, and Dodgson condensation","authors":"Shaun Fallat ,&nbsp;Himanshu Gupta ,&nbsp;Charles R. Johnson","doi":"10.1016/j.laa.2025.01.016","DOIUrl":"10.1016/j.laa.2025.01.016","url":null,"abstract":"<div><div>A <em>n</em>-by-<em>n</em> matrix is called totally positive (<em>TP</em>) if all its minors are positive and <span><math><mi>T</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> if all of its <em>k</em>-by-<em>k</em> submatrices are <em>TP</em>. For an arbitrary totally positive matrix or <span><math><mi>T</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> matrix, we investigate if the <em>r</em>th compound (<span><math><mn>1</mn><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><mi>n</mi></math></span>) is in turn <em>TP</em> or <span><math><mi>T</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, and demonstrate a strong negative resolution in general. Focus is then shifted to Dodgson's algorithm for calculating the determinant of a generic matrix, and we analyze whether the associated condensed matrices are possibly totally positive or <span><math><mi>T</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We also show that all condensed matrices associated with a <em>TP</em> Hankel matrix are <em>TP</em>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 189-202"},"PeriodicalIF":1.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizations of homomorphisms among unital completely positive maps
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-15 DOI: 10.1016/j.laa.2025.01.014
Andre Kornell
{"title":"Characterizations of homomorphisms among unital completely positive maps","authors":"Andre Kornell","doi":"10.1016/j.laa.2025.01.014","DOIUrl":"10.1016/j.laa.2025.01.014","url":null,"abstract":"<div><div>We prove that a unital completely positive map between finite-dimensional <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras is a homomorphism if and only if it is completely entropy-nonincreasing, where the relevant notion of entropy is a variant of von Neumann entropy. This adjusted von Neumann entropy is the negative of the relative entropy with respect to the uniform state on the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra, up to an additive constant. As an intermediate step, we prove that a unital completely positive map between finite-dimensional <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras is a homomorphism if and only if its adjusted Choi operator is a projection. Both equivalences generalize familiar facts about stochastic maps between finite sets.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 314-330"},"PeriodicalIF":1.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On marginal growth rates of matrix products
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-15 DOI: 10.1016/j.laa.2025.01.013
Jonah Varney , Ian D. Morris
{"title":"On marginal growth rates of matrix products","authors":"Jonah Varney ,&nbsp;Ian D. Morris","doi":"10.1016/j.laa.2025.01.013","DOIUrl":"10.1016/j.laa.2025.01.013","url":null,"abstract":"<div><div>In this article we consider the maximum possible growth rate of sequences of long products of <span><math><mi>d</mi><mo>×</mo><mi>d</mi></math></span> matrices all of which are drawn from some specified compact set which has been normalised so as to have joint spectral radius equal to 1. We define the <em>marginal instability rate sequence</em> associated to such a set to be the sequence of real numbers whose <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></math></span> entry is the norm of the largest product of length <em>n</em>, and study the general properties of sequences of this form. We describe how new marginal instability rate sequences can be constructed from old ones, extend an earlier example of Protasov and Jungers to obtain marginal instability rate sequences whose limit superior rate of growth matches various non-integer powers of <em>n</em>, and investigate the relationship between marginal instability rate sequences arising from finite sets of matrices and those arising from sets of matrices with cardinality 2. We also give the first example of a finite set whose marginal instability rate sequence is asymptotically similar to a polynomial with non-integer exponent. Previous examples had this property only along a subsequence.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 132-163"},"PeriodicalIF":1.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The height of an infinite parallelotope is infinite
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-13 DOI: 10.1016/j.laa.2025.01.011
Alexandr V. Kosyak
{"title":"The height of an infinite parallelotope is infinite","authors":"Alexandr V. Kosyak","doi":"10.1016/j.laa.2025.01.011","DOIUrl":"10.1016/j.laa.2025.01.011","url":null,"abstract":"<div><div>We show that if no non-trivial linear combinations of independent vectors <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> belongs to <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then all the heights of an infinite parallelotope constructed on vectors <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are infinite. This result is essential in the proof of the irreducibility of unitary representations of some infinite-dimensional groups.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 18-39"},"PeriodicalIF":1.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When is every linear transformation a sum of a q-potent one and a locally nilpotent one?
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2025-01-13 DOI: 10.1016/j.laa.2025.01.012
A.N. Abyzov, D.T. Tapkin
{"title":"When is every linear transformation a sum of a q-potent one and a locally nilpotent one?","authors":"A.N. Abyzov,&nbsp;D.T. Tapkin","doi":"10.1016/j.laa.2025.01.012","DOIUrl":"10.1016/j.laa.2025.01.012","url":null,"abstract":"<div><div>We prove that for each vector space <em>V</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, every linear transformation of <em>V</em> is a sum of a <em>q</em>-potent linear transformation and a locally nilpotent linear transformation.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 124-131"},"PeriodicalIF":1.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信