Arbitrarily finely divisible stochastic matrices

IF 1 3区 数学 Q1 MATHEMATICS
Priyanka Joshi, Helena Šmigoc
{"title":"Arbitrarily finely divisible stochastic matrices","authors":"Priyanka Joshi,&nbsp;Helena Šmigoc","doi":"10.1016/j.laa.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study the class of arbitrarily finely divisible stochastic matrices (<span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrices): stochastic matrices that have a stochastic <em>c</em>-th root for infinitely many natural numbers <em>c</em>. This notion generalises the class of embeddable stochastic matrices. In particular, if <em>A</em> is a transition matrix for a Markov process over some time period, then arbitrary finely divisibility of <em>A</em> inside the set of stochastic matrices is the necessary and sufficient condition for the existence of a transition matrix corresponding to this Markov process over infinitesimally short periods.</div><div>Our research explores the connection between the spectral properties of an <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrix <em>A</em> and the spectral properties of a limit point <em>L</em> of its stochastic roots. This connection, which is first formalised in the broader context of complex and real square matrices, poses restrictions on <em>A</em> assuming <em>L</em> is given. For example, if an <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrix <em>A</em> has a corresponding irreducible limit point <em>L</em>, then <em>A</em> has to be a circulant matrix. We identify all matrices that can be a limit point of stochastic roots for some non-singular <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrix. Further, we demonstrate a construction of a class of <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrices with a given limit point <em>L</em> from embeddable matrices. To illustrate these theoretical findings, we examine specific cases, including <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices, <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> circulant matrices, and offer a complete characterisation of <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrices of rank-two.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 125-153"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002083","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study the class of arbitrarily finely divisible stochastic matrices (AFD+-matrices): stochastic matrices that have a stochastic c-th root for infinitely many natural numbers c. This notion generalises the class of embeddable stochastic matrices. In particular, if A is a transition matrix for a Markov process over some time period, then arbitrary finely divisibility of A inside the set of stochastic matrices is the necessary and sufficient condition for the existence of a transition matrix corresponding to this Markov process over infinitesimally short periods.
Our research explores the connection between the spectral properties of an AFD+-matrix A and the spectral properties of a limit point L of its stochastic roots. This connection, which is first formalised in the broader context of complex and real square matrices, poses restrictions on A assuming L is given. For example, if an AFD+-matrix A has a corresponding irreducible limit point L, then A has to be a circulant matrix. We identify all matrices that can be a limit point of stochastic roots for some non-singular AFD+-matrix. Further, we demonstrate a construction of a class of AFD+-matrices with a given limit point L from embeddable matrices. To illustrate these theoretical findings, we examine specific cases, including 2×2 matrices, 3×3 circulant matrices, and offer a complete characterisation of AFD+-matrices of rank-two.
任意细可分的随机矩阵
引入并研究了一类任意细可分随机矩阵(AFD+-矩阵):对无穷多个自然数c有随机c次根的随机矩阵。这个概念推广了可嵌入随机矩阵的范畴。特别地,如果A是马尔可夫过程在一段时间内的转移矩阵,那么A在随机矩阵集合内的任意细可整除性是该马尔可夫过程在无限小短时间内对应的转移矩阵存在的充分必要条件。我们的研究探讨了AFD+-矩阵A的谱性质与其随机根的极限点L的谱性质之间的联系。这种联系首先在复数和实方阵的更广泛背景下形式化,假设L给定,对A提出限制。例如,如果一个AFD+-矩阵A有一个相应的不可约极限点L,则A必须是一个循环矩阵。对于非奇异的AFD+-矩阵,我们确定了所有可能成为随机根极限点的矩阵。进一步,我们从可嵌入矩阵中构造了一类具有给定极限点L的AFD+-矩阵。为了说明这些理论发现,我们研究了具体的情况,包括2×2矩阵,3×3循环矩阵,并提供了二级AFD+矩阵的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信