{"title":"Arbitrarily finely divisible stochastic matrices","authors":"Priyanka Joshi, Helena Šmigoc","doi":"10.1016/j.laa.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study the class of arbitrarily finely divisible stochastic matrices (<span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrices): stochastic matrices that have a stochastic <em>c</em>-th root for infinitely many natural numbers <em>c</em>. This notion generalises the class of embeddable stochastic matrices. In particular, if <em>A</em> is a transition matrix for a Markov process over some time period, then arbitrary finely divisibility of <em>A</em> inside the set of stochastic matrices is the necessary and sufficient condition for the existence of a transition matrix corresponding to this Markov process over infinitesimally short periods.</div><div>Our research explores the connection between the spectral properties of an <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrix <em>A</em> and the spectral properties of a limit point <em>L</em> of its stochastic roots. This connection, which is first formalised in the broader context of complex and real square matrices, poses restrictions on <em>A</em> assuming <em>L</em> is given. For example, if an <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrix <em>A</em> has a corresponding irreducible limit point <em>L</em>, then <em>A</em> has to be a circulant matrix. We identify all matrices that can be a limit point of stochastic roots for some non-singular <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrix. Further, we demonstrate a construction of a class of <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrices with a given limit point <em>L</em> from embeddable matrices. To illustrate these theoretical findings, we examine specific cases, including <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices, <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> circulant matrices, and offer a complete characterisation of <span><math><msub><mrow><mi>AFD</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>-matrices of rank-two.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 125-153"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002083","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce and study the class of arbitrarily finely divisible stochastic matrices (-matrices): stochastic matrices that have a stochastic c-th root for infinitely many natural numbers c. This notion generalises the class of embeddable stochastic matrices. In particular, if A is a transition matrix for a Markov process over some time period, then arbitrary finely divisibility of A inside the set of stochastic matrices is the necessary and sufficient condition for the existence of a transition matrix corresponding to this Markov process over infinitesimally short periods.
Our research explores the connection between the spectral properties of an -matrix A and the spectral properties of a limit point L of its stochastic roots. This connection, which is first formalised in the broader context of complex and real square matrices, poses restrictions on A assuming L is given. For example, if an -matrix A has a corresponding irreducible limit point L, then A has to be a circulant matrix. We identify all matrices that can be a limit point of stochastic roots for some non-singular -matrix. Further, we demonstrate a construction of a class of -matrices with a given limit point L from embeddable matrices. To illustrate these theoretical findings, we examine specific cases, including matrices, circulant matrices, and offer a complete characterisation of -matrices of rank-two.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.