Positive moments forever: Undecidable and decidable cases

IF 1 3区 数学 Q1 MATHEMATICS
Gemma De les Coves , Joshua Graf , Andreas Klingler , Tim Netzer
{"title":"Positive moments forever: Undecidable and decidable cases","authors":"Gemma De les Coves ,&nbsp;Joshua Graf ,&nbsp;Andreas Klingler ,&nbsp;Tim Netzer","doi":"10.1016/j.laa.2025.05.015","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the generalized moment membership problem for matrices, a formulation equivalent to Skolem's problem for linear recurrence sequences. We show decidability for orthogonal, unitary, and real eigenvalue matrices, and undecidability for matrices over certain commutative and non-commutative polynomial rings. As consequences, we deduce that positivity is decidable for simple unitary linear recurrence sequences and undecidable for linear recurrence sequences over commutative polynomial rings. As a byproduct, we also prove a free version of Pólya's theorem.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 255-275"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the generalized moment membership problem for matrices, a formulation equivalent to Skolem's problem for linear recurrence sequences. We show decidability for orthogonal, unitary, and real eigenvalue matrices, and undecidability for matrices over certain commutative and non-commutative polynomial rings. As consequences, we deduce that positivity is decidable for simple unitary linear recurrence sequences and undecidable for linear recurrence sequences over commutative polynomial rings. As a byproduct, we also prove a free version of Pólya's theorem.
永远的积极时刻:不确定和可决定的案件
我们研究了矩阵的广义矩隶属度问题,一个等价于线性递归序列的Skolem问题的公式。我们证明了正交、酉和实特征值矩阵的可判性,以及矩阵在某些可交换和非可交换多项式环上的不可判性。作为结果,我们推导出简单酉线性递归序列的正性是可判定的,而对交换多项式环上的线性递归序列的正性是不可判定的。作为副产品,我们也证明了Pólya定理的一个免费版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信