Jordan degree type for codimension three Gorenstein algebras of small Sperner number

IF 1.1 3区 数学 Q1 MATHEMATICS
Nancy Abdallah , Nasrin Altafi , Anthony Iarrobino , Joachim Yaméogo
{"title":"Jordan degree type for codimension three Gorenstein algebras of small Sperner number","authors":"Nancy Abdallah ,&nbsp;Nasrin Altafi ,&nbsp;Anthony Iarrobino ,&nbsp;Joachim Yaméogo","doi":"10.1016/j.laa.2025.08.018","DOIUrl":null,"url":null,"abstract":"<div><div>The Jordan type <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> of a linear form <em>ℓ</em> acting on a graded Artinian algebra <em>A</em> over a field <span><math><mi>k</mi></math></span> is the partition describing the Jordan block decomposition of the multiplication map <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>, which is nilpotent. The Jordan degree type <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> is a finer invariant, describing also the initial degrees of the simple submodules of <em>A</em> in a decomposition of <em>A</em> as a direct sum of <span><math><mi>k</mi><mo>[</mo><mi>ℓ</mi><mo>]</mo></math></span>-modules. The set of Jordan types of <em>A</em> or Jordan degree types (JDT) of <em>A</em> as <em>ℓ</em> varies, is an invariant of the algebra. This invariant has been studied for codimension two graded algebras. We here extend the previous results to certain codimension three graded Artinian Gorenstein (AG) algebras - those of small Sperner number. Given a Gorenstein sequence <em>T</em> - one possible for the Hilbert function of a codimension three graded AG algebra - the irreducible variety <span><math><mrow><mi>Gor</mi></mrow><mo>(</mo><mi>T</mi><mo>)</mo></math></span> parametrizes all Gorenstein algebras of Hilbert function <em>T</em>. We here completely determine the JDT possible for all pairs <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo><mo>,</mo><mi>A</mi><mo>∈</mo><mrow><mi>Gor</mi></mrow><mo>(</mo><mi>T</mi><mo>)</mo></math></span>, for Gorenstein sequences <em>T</em> of the form <span><math><mi>T</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>,</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> for Sperner number <span><math><mi>s</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span> and arbitrary multiplicity <em>k</em>. For <span><math><mi>s</mi><mo>=</mo><mn>6</mn></math></span> we delimit the prospective JDT, without verifying that each occurs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 82-120"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003611","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Jordan type PA, of a linear form acting on a graded Artinian algebra A over a field k is the partition describing the Jordan block decomposition of the multiplication map m, which is nilpotent. The Jordan degree type SA, is a finer invariant, describing also the initial degrees of the simple submodules of A in a decomposition of A as a direct sum of k[]-modules. The set of Jordan types of A or Jordan degree types (JDT) of A as varies, is an invariant of the algebra. This invariant has been studied for codimension two graded algebras. We here extend the previous results to certain codimension three graded Artinian Gorenstein (AG) algebras - those of small Sperner number. Given a Gorenstein sequence T - one possible for the Hilbert function of a codimension three graded AG algebra - the irreducible variety Gor(T) parametrizes all Gorenstein algebras of Hilbert function T. We here completely determine the JDT possible for all pairs (A,),AGor(T), for Gorenstein sequences T of the form T=(1,3,sk,3,1) for Sperner number s=3,4,5 and arbitrary multiplicity k. For s=6 we delimit the prospective JDT, without verifying that each occurs.
小Sperner数的余维三Gorenstein代数的Jordan度型
作用于域k上的梯度阿提尼代数a上的线性形式l的Jordan型PA, l是描述乘法映射m l的Jordan块分解的幂零划分。约当度类型SA, r是一个更精细的不变量,它也描述了a分解为k[r]-模的直接和时a的简单子模的初始度。A的约当类型或约当度类型(JDT)的集合随着r的变化,是代数的不变量。本文研究了余维二阶代数的不变量。本文将先前的结果推广到某些余维三阶Artinian Gorenstein (AG)代数-小Sperner数代数。给定一个Gorenstein序列T -一个可能的余维三梯度AG代数的Hilbert函数-不可约变量Gor(T)参数化了Hilbert函数T的所有Gorenstein代数。我们在这里完全确定了所有对(a, r), a∈Gor(T),对于形式为T=(1,3,sk,3,1)的Gorenstein序列T,对于Sperner数s=3,4,5和任意多重k的JDT。对于s=6,我们划分了未来的JDT,而不验证每一个都发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信