具有标记顶点的离散量子行走及其平均顶点混合矩阵

IF 1.1 3区 数学 Q1 MATHEMATICS
Amulya Mohan, Hanmeng Zhan
{"title":"具有标记顶点的离散量子行走及其平均顶点混合矩阵","authors":"Amulya Mohan,&nbsp;Hanmeng Zhan","doi":"10.1016/j.laa.2025.08.013","DOIUrl":null,"url":null,"abstract":"<div><div>We study the discrete quantum walk on a regular graph <em>X</em> that assigns negative identity coins to marked vertices <em>S</em> and Grover coins to the unmarked ones. We find combinatorial bases for the eigenspaces of the transition matrix, and derive a formula for the average vertex mixing matrix <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>.</div><div>We then find bounds for entries in <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, and study when these bounds are tight. In particular, the average probabilities between marked vertices are lower bounded by a matrix determined by the induced subgraph <span><math><mi>X</mi><mo>[</mo><mi>S</mi><mo>]</mo></math></span>, the vertex-deleted subgraph <span><math><mi>X</mi><mo>﹨</mo><mi>S</mi></math></span>, and the edge deleted subgraph <span><math><mi>X</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We show this bound is achieved if and only if the marked vertices have walk-equitable neighborhoods in the vertex-deleted subgraph. Finally, for quantum walks attaining this bound, we determine when <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>[</mo><mi>S</mi><mo>,</mo><mi>S</mi><mo>]</mo></math></span> is symmetric, positive semidefinite or uniform.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 336-367"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete quantum walks with marked vertices and their average vertex mixing matrices\",\"authors\":\"Amulya Mohan,&nbsp;Hanmeng Zhan\",\"doi\":\"10.1016/j.laa.2025.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the discrete quantum walk on a regular graph <em>X</em> that assigns negative identity coins to marked vertices <em>S</em> and Grover coins to the unmarked ones. We find combinatorial bases for the eigenspaces of the transition matrix, and derive a formula for the average vertex mixing matrix <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>.</div><div>We then find bounds for entries in <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, and study when these bounds are tight. In particular, the average probabilities between marked vertices are lower bounded by a matrix determined by the induced subgraph <span><math><mi>X</mi><mo>[</mo><mi>S</mi><mo>]</mo></math></span>, the vertex-deleted subgraph <span><math><mi>X</mi><mo>﹨</mo><mi>S</mi></math></span>, and the edge deleted subgraph <span><math><mi>X</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We show this bound is achieved if and only if the marked vertices have walk-equitable neighborhoods in the vertex-deleted subgraph. Finally, for quantum walks attaining this bound, we determine when <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>[</mo><mi>S</mi><mo>,</mo><mi>S</mi><mo>]</mo></math></span> is symmetric, positive semidefinite or uniform.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"727 \",\"pages\":\"Pages 336-367\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003490\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003490","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究正则图X上的离散量子行走问题,该问题将负单位元硬币分配给有标记的顶点S,将Grover硬币分配给无标记的顶点S。我们找到了转移矩阵的特征空间的组合基,并导出了平均顶点混合矩阵M的公式。然后我们找到M - M中元素的边界,并研究这些边界何时是紧的。特别地,标记顶点之间的平均概率下界是由诱导子图X[S],顶点删除子图X\S和边缘删除子图X−E(S)确定的矩阵。我们证明,当且仅当标记的顶点在顶点删除子图中具有行走公平的邻域时,该边界才能实现。最后,对于达到此界的量子行走,我们确定M - [S,S]是对称的、正半定的或均匀的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete quantum walks with marked vertices and their average vertex mixing matrices
We study the discrete quantum walk on a regular graph X that assigns negative identity coins to marked vertices S and Grover coins to the unmarked ones. We find combinatorial bases for the eigenspaces of the transition matrix, and derive a formula for the average vertex mixing matrix Mˆ.
We then find bounds for entries in Mˆ, and study when these bounds are tight. In particular, the average probabilities between marked vertices are lower bounded by a matrix determined by the induced subgraph X[S], the vertex-deleted subgraph XS, and the edge deleted subgraph XE(S). We show this bound is achieved if and only if the marked vertices have walk-equitable neighborhoods in the vertex-deleted subgraph. Finally, for quantum walks attaining this bound, we determine when Mˆ[S,S] is symmetric, positive semidefinite or uniform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信