Signed graphs Gσ with nullity n(Gσ)−g(Gσ)−1

IF 1.1 3区 数学 Q1 MATHEMATICS
Suliman Khan
{"title":"Signed graphs Gσ with nullity n(Gσ)−g(Gσ)−1","authors":"Suliman Khan","doi":"10.1016/j.laa.2025.08.017","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>=</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> be a signed graph of order <span><math><mi>n</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>. Let denote the girth, rank, and nullity of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> by <span><math><mi>g</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mi>r</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>, and <span><math><mi>η</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span>, respectively. Recently, Chang and Li (2022) <span><span>[6]</span></span>, characterized connected graphs <em>G</em> with nullity <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. In this paper, we extend the results of Chang and Li to the setting of signed graphs with some new improvements. Furthermore, we characterize signed graphs <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span> that satisfy the nullity conditions <span><math><mi>η</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>=</mo><mi>n</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>=</mo><mi>n</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo><mo>−</mo><mn>2</mn></math></span>, providing distinct characterization from those of Q. Wu et al. (2022).</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 47-62"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500360X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Gσ=(G,σ) be a signed graph of order n(Gσ). Let denote the girth, rank, and nullity of Gσ by g(Gσ), r(Gσ), and η(Gσ), respectively. Recently, Chang and Li (2022) [6], characterized connected graphs G with nullity n(G)g(G)1. In this paper, we extend the results of Chang and Li to the setting of signed graphs with some new improvements. Furthermore, we characterize signed graphs Gσ that satisfy the nullity conditions η(Gσ)=n(Gσ)g(Gσ) and η(Gσ)=n(Gσ)g(Gσ)2, providing distinct characterization from those of Q. Wu et al. (2022).
零为n(Gσ)−g(Gσ)−1的符号图Gσ
设Gσ=(G,σ)是n阶(Gσ)的带符号图。令分别用g(Gσ)、r(Gσ)和η(Gσ)表示Gσ的周长、秩和零。最近,Chang和Li(2022)[6],刻画了零为n(G)−G (G)−1的连通图G。在本文中,我们将Chang和Li的结果推广到有符号图的集合,并做了一些新的改进。此外,我们描述了满足零性条件η(Gσ)=n(Gσ) - g(Gσ)和η(Gσ)=n(Gσ) - g(Gσ) - 2的符号图Gσ,提供了与Q. Wu等人(2022)不同的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信