一些辛特征值不等式中的等式

IF 1.1 3区 数学 Q1 MATHEMATICS
Hemant K. Mishra
{"title":"一些辛特征值不等式中的等式","authors":"Hemant K. Mishra","doi":"10.1016/j.laa.2025.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>In the last decade, numerous works have investigated several properties of symplectic eigenvalues. Remarkably, the results on symplectic eigenvalues have been found to be analogous to those of eigenvalues of Hermitian matrices with appropriate interpretations. In particular, symplectic analogs of famous eigenvalue inequalities are known today such as Weyl's inequalities, Lidskii's inequalities, and Schur–Horn majorization inequalities. In this paper, we provide necessary and sufficient conditions for equality in the symplectic analogs of the aforementioned inequalities.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 141-160"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equality in some symplectic eigenvalue inequalities\",\"authors\":\"Hemant K. Mishra\",\"doi\":\"10.1016/j.laa.2025.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the last decade, numerous works have investigated several properties of symplectic eigenvalues. Remarkably, the results on symplectic eigenvalues have been found to be analogous to those of eigenvalues of Hermitian matrices with appropriate interpretations. In particular, symplectic analogs of famous eigenvalue inequalities are known today such as Weyl's inequalities, Lidskii's inequalities, and Schur–Horn majorization inequalities. In this paper, we provide necessary and sufficient conditions for equality in the symplectic analogs of the aforementioned inequalities.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"728 \",\"pages\":\"Pages 141-160\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003647\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003647","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,许多工作研究了辛特征值的几个性质。值得注意的是,在适当的解释下,辛特征值的结果与厄米矩阵的特征值的结果相似。特别是,著名的特征值不等式的辛类比,如Weyl不等式,Lidskii不等式和Schur-Horn多数化不等式。在本文中,我们给出了上述不等式的辛类似的等式的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equality in some symplectic eigenvalue inequalities
In the last decade, numerous works have investigated several properties of symplectic eigenvalues. Remarkably, the results on symplectic eigenvalues have been found to be analogous to those of eigenvalues of Hermitian matrices with appropriate interpretations. In particular, symplectic analogs of famous eigenvalue inequalities are known today such as Weyl's inequalities, Lidskii's inequalities, and Schur–Horn majorization inequalities. In this paper, we provide necessary and sufficient conditions for equality in the symplectic analogs of the aforementioned inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信