Laplacian eigenvalue distribution in terms of degree sequence

IF 1 3区 数学 Q1 MATHEMATICS
S. Akbari , M. Alaeiyan , M. Darougheh
{"title":"Laplacian eigenvalue distribution in terms of degree sequence","authors":"S. Akbari ,&nbsp;M. Alaeiyan ,&nbsp;M. Darougheh","doi":"10.1016/j.laa.2025.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Suppose that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mi>I</mi></math></span> denotes the number of Laplacian eigenvalues of <em>G</em> in an interval <em>I</em>. This paper presents some bounds on the number of Laplacian eigenvalues contained in the various subintervals of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> in terms of the degree sequence of <em>G</em>. We show that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>[</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>n</mi><mo>]</mo><mo>=</mo><mn>2</mn></math></span> if and only if <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo></math></span>. Additionally, we characterize all graphs for which <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>[</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>n</mi><mo>]</mo><mo>=</mo><mn>2</mn></math></span>. Moreover, we classify all graphs such that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 49-61"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002629","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph with degree sequence d1dn. Suppose that mGI denotes the number of Laplacian eigenvalues of G in an interval I. This paper presents some bounds on the number of Laplacian eigenvalues contained in the various subintervals of [0,n] in terms of the degree sequence of G. We show that mG[dn,n]=2 if and only if G{P3,P4,C3,C5}. Additionally, we characterize all graphs for which mG[dn1,n]=2. Moreover, we classify all graphs such that mG[0,d1]=2.
阶序列的拉普拉斯特征值分布
设G为度序列d1≥⋯≥dn的图。设mGI表示区间i中G的拉普拉斯特征值的个数。本文用G的度序列给出了[0,n]的各个子区间中包含的拉普拉斯特征值的个数的一些界,并证明了当且仅当G∈{P3,P4,C3,C5} mG[dn,n]=2。此外,我们刻画了所有mG[dn−1,n]=2的图。此外,我们对mG[0,d1]=2的所有图进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信