{"title":"用2 × 2积分矩阵计算h方程","authors":"Gemma Bastardas , Enric Ventura","doi":"10.1016/j.laa.2025.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>We study the transference through finite index extensions of the notion of equational coherence, as well as its effective counterpart. We deduce an explicit algorithm for solving the following algorithmic problem about size two integral invertible matrices: “given <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>;</mo><mi>g</mi><mo>∈</mo><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>, decide whether <em>g</em> is algebraic over the subgroup <span><math><mi>H</mi><mo>=</mo><mrow><mo>〈</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>〉</mo></mrow><mo>⩽</mo><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> (i.e., whether there exist a non-trivial <em>H</em>-equation <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>H</mi><mo>⁎</mo><mrow><mo>〈</mo><mi>x</mi><mo>〉</mo></mrow></math></span> such that <span><math><mi>w</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>) and, in the affirmative case, compute finitely many such <em>H</em>-equations <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>H</mi><mo>⁎</mo><mrow><mo>〈</mo><mi>x</mi><mo>〉</mo></mrow></math></span> further satisfying that any <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>H</mi><mo>⁎</mo><mrow><mo>〈</mo><mi>x</mi><mo>〉</mo></mrow></math></span> with <span><math><mi>w</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> is a product of conjugates of <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>”. The same problem for square matrices of size 4 and bigger is unsolvable.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 218-241"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing H-equations with 2-by-2 integral matrices\",\"authors\":\"Gemma Bastardas , Enric Ventura\",\"doi\":\"10.1016/j.laa.2025.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the transference through finite index extensions of the notion of equational coherence, as well as its effective counterpart. We deduce an explicit algorithm for solving the following algorithmic problem about size two integral invertible matrices: “given <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>;</mo><mi>g</mi><mo>∈</mo><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>, decide whether <em>g</em> is algebraic over the subgroup <span><math><mi>H</mi><mo>=</mo><mrow><mo>〈</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>〉</mo></mrow><mo>⩽</mo><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> (i.e., whether there exist a non-trivial <em>H</em>-equation <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>H</mi><mo>⁎</mo><mrow><mo>〈</mo><mi>x</mi><mo>〉</mo></mrow></math></span> such that <span><math><mi>w</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>) and, in the affirmative case, compute finitely many such <em>H</em>-equations <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>H</mi><mo>⁎</mo><mrow><mo>〈</mo><mi>x</mi><mo>〉</mo></mrow></math></span> further satisfying that any <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>H</mi><mo>⁎</mo><mrow><mo>〈</mo><mi>x</mi><mo>〉</mo></mrow></math></span> with <span><math><mi>w</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> is a product of conjugates of <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>”. The same problem for square matrices of size 4 and bigger is unsolvable.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 218-241\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002599\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002599","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了方程相干概念的有限指数扩展的迁移,以及它的有效对应物。我们演绎一个显式算法求解下面的算法问题大小两个积分矩阵可逆的:“鉴于h1,…,人力资源;g∈PSL2 (Z),决定是否代数在群g H = < h1,…,人力资源>⩽PSL2 (Z)(例如,是否存在一个非平凡的H-equation w H (x)∈⁎< x >这样w (g) = 1),肯定的情况下,计算有限许多这样H-equations w1 (x)…,ws H (x)∈⁎< x >进一步满足任何w H (x)∈⁎< x > w (g) = 1是共轭的w1的产物(x)…,ws (x)”。对于大小为4或更大的方阵,同样的问题是不可解的。
Computing H-equations with 2-by-2 integral matrices
We study the transference through finite index extensions of the notion of equational coherence, as well as its effective counterpart. We deduce an explicit algorithm for solving the following algorithmic problem about size two integral invertible matrices: “given , decide whether g is algebraic over the subgroup (i.e., whether there exist a non-trivial H-equation such that ) and, in the affirmative case, compute finitely many such H-equations further satisfying that any with is a product of conjugates of ”. The same problem for square matrices of size 4 and bigger is unsolvable.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.