加权柯西矩阵的谱映射是一个对合

IF 1.1 3区 数学 Q1 MATHEMATICS
Alexander Pushnitski , Sergei Treil
{"title":"加权柯西矩阵的谱映射是一个对合","authors":"Alexander Pushnitski ,&nbsp;Sergei Treil","doi":"10.1016/j.laa.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>N</em> be a natural number. We consider weighted Cauchy matrices of the form<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><msubsup><mrow><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfrac><mo>}</mo></mrow><mrow><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are positive real numbers and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are distinct positive real numbers, listed in increasing order. Let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> be the eigenvalues of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>, listed in increasing order. Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be positive real numbers such that <span><math><msqrt><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></math></span> is the Euclidean norm of the orthogonal projection of the vector<span><span><span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>(</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>,</mo><mo>…</mo><mo>,</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></msqrt><mo>)</mo></math></span></span></span> onto the <em>k</em>'th eigenspace of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>. We prove that the spectral map <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>A</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>b</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> is an involution and discuss simple properties of this map.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 1-11"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectral map for weighted Cauchy matrices is an involution\",\"authors\":\"Alexander Pushnitski ,&nbsp;Sergei Treil\",\"doi\":\"10.1016/j.laa.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>N</em> be a natural number. We consider weighted Cauchy matrices of the form<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><msubsup><mrow><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfrac><mo>}</mo></mrow><mrow><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are positive real numbers and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are distinct positive real numbers, listed in increasing order. Let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> be the eigenvalues of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>, listed in increasing order. Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be positive real numbers such that <span><math><msqrt><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></math></span> is the Euclidean norm of the orthogonal projection of the vector<span><span><span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>(</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>,</mo><mo>…</mo><mo>,</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></msqrt><mo>)</mo></math></span></span></span> onto the <em>k</em>'th eigenspace of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>. We prove that the spectral map <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>A</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>b</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> is an involution and discuss simple properties of this map.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002551\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002551","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设N是一个自然数。考虑ca,A={AjAkak+aj}j,k=1N的加权柯西矩阵,其中A1,…,AN为正实数,A1,…,AN为不同正实数,按递增顺序排列。设b1,…,bN为Ca,A的特征值,按递增顺序排列。设Bk为正实数,使得Bk是向量va =(A1,…,AN)在Ca,A的第k个特征空间上的正交投影的欧氏范数。证明了谱映射(a, a)∑(b, b)是一个对合,并讨论了该映射的一些简单性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectral map for weighted Cauchy matrices is an involution
Let N be a natural number. We consider weighted Cauchy matrices of the formCa,A={AjAkak+aj}j,k=1N, where A1,,AN are positive real numbers and a1,,aN are distinct positive real numbers, listed in increasing order. Let b1,,bN be the eigenvalues of Ca,A, listed in increasing order. Let Bk be positive real numbers such that Bk is the Euclidean norm of the orthogonal projection of the vectorvA=(A1,,AN) onto the k'th eigenspace of Ca,A. We prove that the spectral map (a,A)(b,B) is an involution and discuss simple properties of this map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信