{"title":"加权柯西矩阵的谱映射是一个对合","authors":"Alexander Pushnitski , Sergei Treil","doi":"10.1016/j.laa.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>N</em> be a natural number. We consider weighted Cauchy matrices of the form<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><msubsup><mrow><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfrac><mo>}</mo></mrow><mrow><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are positive real numbers and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are distinct positive real numbers, listed in increasing order. Let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> be the eigenvalues of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>, listed in increasing order. Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be positive real numbers such that <span><math><msqrt><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></math></span> is the Euclidean norm of the orthogonal projection of the vector<span><span><span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>(</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>,</mo><mo>…</mo><mo>,</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></msqrt><mo>)</mo></math></span></span></span> onto the <em>k</em>'th eigenspace of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>. We prove that the spectral map <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>A</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>b</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> is an involution and discuss simple properties of this map.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 1-11"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectral map for weighted Cauchy matrices is an involution\",\"authors\":\"Alexander Pushnitski , Sergei Treil\",\"doi\":\"10.1016/j.laa.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>N</em> be a natural number. We consider weighted Cauchy matrices of the form<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>=</mo><msubsup><mrow><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfrac><mo>}</mo></mrow><mrow><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are positive real numbers and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are distinct positive real numbers, listed in increasing order. Let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> be the eigenvalues of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>, listed in increasing order. Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be positive real numbers such that <span><math><msqrt><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msqrt></math></span> is the Euclidean norm of the orthogonal projection of the vector<span><span><span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mo>(</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>,</mo><mo>…</mo><mo>,</mo><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></msqrt><mo>)</mo></math></span></span></span> onto the <em>k</em>'th eigenspace of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span>. We prove that the spectral map <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>A</mi><mo>)</mo><mo>↦</mo><mo>(</mo><mi>b</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> is an involution and discuss simple properties of this map.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002551\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002551","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The spectral map for weighted Cauchy matrices is an involution
Let N be a natural number. We consider weighted Cauchy matrices of the form where are positive real numbers and are distinct positive real numbers, listed in increasing order. Let be the eigenvalues of , listed in increasing order. Let be positive real numbers such that is the Euclidean norm of the orthogonal projection of the vector onto the k'th eigenspace of . We prove that the spectral map is an involution and discuss simple properties of this map.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.