矩阵代数嵌入超图莱维特路径代数及其应用

IF 1.1 3区 数学 Q1 MATHEMATICS
Romar B. Dinoy , Tran Giang Nam , Jocelyn P. Vilela
{"title":"矩阵代数嵌入超图莱维特路径代数及其应用","authors":"Romar B. Dinoy ,&nbsp;Tran Giang Nam ,&nbsp;Jocelyn P. Vilela","doi":"10.1016/j.laa.2025.07.021","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we provide criteria for an ultragraph <span><math><mi>G</mi></math></span> so that for any field <em>K</em> and <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the full matrix algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is embedded in the associated Leavitt path algebra of <span><math><mi>G</mi></math></span>. This result, which has not appeared in the context of Leavitt path algebras of graphs, is then applied to characterize properties of Lie solvable and Lie nilpotent ultragraph Leavitt path algebras, and compute the solvable index of a Lie solvable ultragraph Leavitt path algebra.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"726 ","pages":"Pages 216-243"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding matrix algebras into ultragraph Leavitt path algebras and applications\",\"authors\":\"Romar B. Dinoy ,&nbsp;Tran Giang Nam ,&nbsp;Jocelyn P. Vilela\",\"doi\":\"10.1016/j.laa.2025.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we provide criteria for an ultragraph <span><math><mi>G</mi></math></span> so that for any field <em>K</em> and <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the full matrix algebra <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is embedded in the associated Leavitt path algebra of <span><math><mi>G</mi></math></span>. This result, which has not appeared in the context of Leavitt path algebras of graphs, is then applied to characterize properties of Lie solvable and Lie nilpotent ultragraph Leavitt path algebras, and compute the solvable index of a Lie solvable ultragraph Leavitt path algebra.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"726 \",\"pages\":\"Pages 216-243\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952500312X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500312X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一个超图G的判据,使得对于任意域K和n≥1,满矩阵代数Mn(K)嵌入到G的相关的Leavitt路径代数中。这一结果在图的Leavitt路径代数中没有出现过,然后应用这一结果表征了Lie可解和Lie幂零超图Leavitt路径代数的性质,并计算了Lie可解超图Leavitt路径代数的可解指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding matrix algebras into ultragraph Leavitt path algebras and applications
In this article, we provide criteria for an ultragraph G so that for any field K and n1, the full matrix algebra Mn(K) is embedded in the associated Leavitt path algebra of G. This result, which has not appeared in the context of Leavitt path algebras of graphs, is then applied to characterize properties of Lie solvable and Lie nilpotent ultragraph Leavitt path algebras, and compute the solvable index of a Lie solvable ultragraph Leavitt path algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信