Zero-dilation indices and numerical ranges

IF 1.1 3区 数学 Q1 MATHEMATICS
Kennett L. Dela Rosa
{"title":"Zero-dilation indices and numerical ranges","authors":"Kennett L. Dela Rosa","doi":"10.1016/j.laa.2025.07.018","DOIUrl":null,"url":null,"abstract":"<div><div>The zero-dilation index <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of a matrix <em>A</em> is the largest integer <em>k</em> for which <span><math><mo>[</mo><mtable><mtr><mtd><msub><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msub></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mo>⁎</mo></mtd><mtd><mo>⁎</mo></mtd></mtr></mtable><mo>]</mo></math></span> is unitarily similar to <em>A</em>. In this study, the zero-dilation indices of certain block matrices are considered, namely, the block matrix analogues of companion matrices and upper triangular KMS matrices, respectively shown as<span><span><span><math><mi>C</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub></mtd><mtd><msubsup><mrow><mo>[</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup></mtd></mtr></mtable><mo>]</mo></mrow><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>K</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mi>A</mi></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup></mtd><mtd><mo>⋯</mo></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>A</mi></mtd><mtd><mo>⋱</mo></mtd><mtd><mo>⋮</mo></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋱</mo></mtd><mtd><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd><mo>⋮</mo></mtd><mtd><mo>⋮</mo></mtd><mtd><mo>⋮</mo></mtd><mtd><mo>⋱</mo></mtd><mtd><mi>A</mi></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋯</mo></mtd><mtd><mn>0</mn></mtd></mtr></mtable><mo>]</mo></mrow></math></span></span></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>K</mi></math></span> are <em>mn</em>-by-<em>mn</em> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>A</mi></math></span> are <em>n</em>-by-<em>n</em>. Provided <span><math><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> is nonsingular, it is proved that <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> satisfies the following: if <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span> is odd (respectively, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> is even), then <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> (respectively, <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>m</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>). In the odd <em>m</em> case, examples are given showing that it is possible to get as zero-dilation index each integer value between <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. On the other hand, <span><math><mi>d</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is proved to be equal to the number of nonnegative eigenvalues of <span><math><mo>(</mo><mi>K</mi><mo>+</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Alternative characterizations of <span><math><mi>d</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> are given. The circularity of the numerical range of <span><math><mi>K</mi></math></span> is also considered.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"726 ","pages":"Pages 91-112"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The zero-dilation index d(A) of a matrix A is the largest integer k for which [0k] is unitarily similar to A. In this study, the zero-dilation indices of certain block matrices are considered, namely, the block matrix analogues of companion matrices and upper triangular KMS matrices, respectively shown asC=[0j=1m1AjB0[Bj]j=1m1]andK=[0AA2Am100A000A2A0000] where C and K are mn-by-mn and Aj,Bj,A are n-by-n. Provided j=1m1Aj is nonsingular, it is proved that d(C) satisfies the following: if m3 is odd (respectively, m2 is even), then (m1)n2d(C)(m+1)n2 (respectively, d(C)=mn2). In the odd m case, examples are given showing that it is possible to get as zero-dilation index each integer value between (m1)n2 and (m+1)n2. On the other hand, d(K) is proved to be equal to the number of nonnegative eigenvalues of (K+K)/2. Alternative characterizations of d(K) are given. The circularity of the numerical range of K is also considered.
零膨胀指数和数值范围
矩阵A的零膨胀指数d(A)是与A酉相似的最大整数k,在本研究中,考虑某些块矩阵的零膨胀指数,即同伴矩阵和上三角形KMS矩阵的块矩阵类似物,分别表示为C=[0 j=1m−1AjB0[Bj]j=1m−1]和k =[0AA2⋯Am−100A A2],其中C和k为mn × mn, Aj,Bj,A为n × n。假设 j=1m−1Aj是非奇异的,证明d(C)满足如下条件:若m≥3为奇数(分别为m≥2为偶数),则(m−1)n2≤d(C)≤(m+1)n2(分别为d(C)=mn2)。在奇数m的情况下,给出的例子表明,可以得到(m−1)n2和(m+1)n2之间的每个整数值作为零膨胀指数。另一方面,证明了d(K)等于(K+K)/2的非负特征值的个数。给出了d(K)的可选表征。还考虑了K数值范围的圆度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信