具有很少距离特征值的无限一族积分和距离积分Cayley图

IF 1.1 3区 数学 Q1 MATHEMATICS
Daniele D'Angeli, Alfredo Donno, Stefano Spessato
{"title":"具有很少距离特征值的无限一族积分和距离积分Cayley图","authors":"Daniele D'Angeli,&nbsp;Alfredo Donno,&nbsp;Stefano Spessato","doi":"10.1016/j.laa.2025.07.022","DOIUrl":null,"url":null,"abstract":"<div><div>We construct the distance matrices of the Cayley graphs of the Pauli groups, recursively defined by using the notion of central product of groups, with respect to a suitable symmetric generating set. These Cayley graphs constitute an infinite sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> of regular non distance-regular graphs of degree <span><math><mn>3</mn><mi>n</mi><mo>+</mo><mn>2</mn></math></span> with integral adjacency spectrum. We explicitly determine all the distance eigenvectors and eigenvalues, showing that each of these graphs has exactly six distinct distance eigenvalues, answering a question by Atik and Panigrahi. Moreover, all the distance eigenvalues have the remarkable property of being integers. We compute the diameter of each graph and the cardinality of all spheres centered at any vertex. We are also able to determine topological indices like the Wiener index, the Wiener polarity index, the Harary index, as well as the distance energy. We finally show that this sequence of Cayley graphs is a counterexample to two conjectures formulated by Aouchiche and Hansen.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"726 ","pages":"Pages 180-215"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an infinite family of integral and distance integral Cayley graphs with few distance eigenvalues\",\"authors\":\"Daniele D'Angeli,&nbsp;Alfredo Donno,&nbsp;Stefano Spessato\",\"doi\":\"10.1016/j.laa.2025.07.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct the distance matrices of the Cayley graphs of the Pauli groups, recursively defined by using the notion of central product of groups, with respect to a suitable symmetric generating set. These Cayley graphs constitute an infinite sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> of regular non distance-regular graphs of degree <span><math><mn>3</mn><mi>n</mi><mo>+</mo><mn>2</mn></math></span> with integral adjacency spectrum. We explicitly determine all the distance eigenvectors and eigenvalues, showing that each of these graphs has exactly six distinct distance eigenvalues, answering a question by Atik and Panigrahi. Moreover, all the distance eigenvalues have the remarkable property of being integers. We compute the diameter of each graph and the cardinality of all spheres centered at any vertex. We are also able to determine topological indices like the Wiener index, the Wiener polarity index, the Harary index, as well as the distance energy. We finally show that this sequence of Cayley graphs is a counterexample to two conjectures formulated by Aouchiche and Hansen.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"726 \",\"pages\":\"Pages 180-215\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003131\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用群的中心积的概念,构造了泡利群的Cayley图的距离矩阵,并递归地定义了泡利群。这些Cayley图构成了具有积分邻接谱的3n+2次正则非距离正则图的无穷序列{Γn}n≥1。我们显式地确定了所有的距离特征向量和特征值,表明每个图都有六个不同的距离特征值,回答了Atik和Panigrahi的问题。而且,所有的距离特征值都具有显著的整数性质。我们计算每个图的直径和以任意顶点为中心的所有球体的基数。我们还可以确定拓扑指数,比如维纳指数,维纳极性指数,哈里指数,以及距离能量。我们最后证明了Cayley图序列是Aouchiche和Hansen提出的两个猜想的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an infinite family of integral and distance integral Cayley graphs with few distance eigenvalues
We construct the distance matrices of the Cayley graphs of the Pauli groups, recursively defined by using the notion of central product of groups, with respect to a suitable symmetric generating set. These Cayley graphs constitute an infinite sequence {Γn}n1 of regular non distance-regular graphs of degree 3n+2 with integral adjacency spectrum. We explicitly determine all the distance eigenvectors and eigenvalues, showing that each of these graphs has exactly six distinct distance eigenvalues, answering a question by Atik and Panigrahi. Moreover, all the distance eigenvalues have the remarkable property of being integers. We compute the diameter of each graph and the cardinality of all spheres centered at any vertex. We are also able to determine topological indices like the Wiener index, the Wiener polarity index, the Harary index, as well as the distance energy. We finally show that this sequence of Cayley graphs is a counterexample to two conjectures formulated by Aouchiche and Hansen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信