Sharp upper bounds on the second largest signless Laplacian eigenvalues of connected graphs

IF 1.1 3区 数学 Q1 MATHEMATICS
Shu-Guang Guo, Rong Zhang
{"title":"Sharp upper bounds on the second largest signless Laplacian eigenvalues of connected graphs","authors":"Shu-Guang Guo,&nbsp;Rong Zhang","doi":"10.1016/j.laa.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a connected graph with <em>n</em> vertices and <em>m</em> edges, and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the second largest signless Laplacian eigenvalue of <em>G</em>. A conjecture, due to Cvetković et al. (2007), asserts that <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mn>6</mn><mo>+</mo><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>8</mn><mo>)</mo><mo>/</mo><mi>n</mi></math></span> with equality if and only if <em>G</em> is the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mspace></mspace><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></math></span>. In this paper, we give sharp upper bounds on <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for a connected (minimally 2-connected) graph with given size. Employing the upper bounds, we prove that the conjecture holds for a connected bipartite graph, for a minimally 2-connected graph and for a connected graph with <span><math><mi>m</mi><mo>≠</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>5</mn></math></span> and <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>6</mn></math></span>, respectively.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 70-95"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002885","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected graph with n vertices and m edges, and q2(G) denote the second largest signless Laplacian eigenvalue of G. A conjecture, due to Cvetković et al. (2007), asserts that q2(G)n6+(2m+8)/n with equality if and only if G is the complete bipartite graph K2,n2. In this paper, we give sharp upper bounds on q2(G) for a connected (minimally 2-connected) graph with given size. Employing the upper bounds, we prove that the conjecture holds for a connected bipartite graph, for a minimally 2-connected graph and for a connected graph with m2n5 and 2n6, respectively.
连通图的第二大无符号拉普拉斯特征值的明显上界
设G是一个有n个顶点和m条边的连通图,q2(G)表示G的第二大无符号拉普拉斯特征值。cvetkoviki et al.(2007)的一个猜想断言,当且仅当G是完全二部图K2,n - 2时,q2(G)≤n - 6+(2m+8)/n相等。本文给出了给定大小的连通(最小2连通)图的q2(G)的明显上界。利用上界证明了该猜想分别适用于连通二部图、最小2连通图和m≠2n−5和2n−6的连通图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信