Linear Algebra and its Applications最新文献

筛选
英文 中文
Demystifying the Karpelevič theorem 揭开卡尔佩列维奇定理的神秘面纱
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-08 DOI: 10.1016/j.laa.2024.08.006
Devon N. Munger, Andrew L. Nickerson, Pietro Paparella
{"title":"Demystifying the Karpelevič theorem","authors":"Devon N. Munger,&nbsp;Andrew L. Nickerson,&nbsp;Pietro Paparella","doi":"10.1016/j.laa.2024.08.006","DOIUrl":"10.1016/j.laa.2024.08.006","url":null,"abstract":"<div><p>The statement of the Karpelevič theorem concerning the location of the eigenvalues of stochastic matrices in the complex plane (known as the Karpelevič region) is long and complicated and his proof methods are, at best, nebulous. Fortunately, an elegant simplification of the statement was provided by Ito—in particular, Ito's theorem asserts that the boundary of the Karpelevič region consists of arcs whose points satisfy a polynomial equation that depends on the endpoints of the arc. Unfortunately, Ito did not prove his version and only showed that it is equivalent.</p><p>More recently, Johnson and Paparella showed that points satisfying Ito's equation belong to the Karpelevič region. Although not the intent of their work, this initiated the process of proving Ito's theorem and hence providing another proof of the Karpelevič theorem.</p><p>The purpose of this work is to continue this effort by showing that an arc appears in the prescribed sector. To this end, it is shown that there is a continuous function <span><math><mi>λ</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>⟶</mo><mi>C</mi></math></span> such that <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>(</mo><mi>α</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, <span><math><mo>∀</mo><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, where <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msup></math></span> is a Type I reduced Ito polynomial. It is also shown that these arcs are simple. Finally, an elementary argument is given to show that points on the boundary of the Karpelevič region are extremal whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 46-62"},"PeriodicalIF":1.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equi-isoclinic subspaces, covers of the complete graph, and complex conference matrices 等离子空间、完整图的覆盖和复会议矩阵
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-07 DOI: 10.1016/j.laa.2024.08.002
Matthew Fickus , Joseph W. Iverson , John Jasper , Dustin G. Mixon
{"title":"Equi-isoclinic subspaces, covers of the complete graph, and complex conference matrices","authors":"Matthew Fickus ,&nbsp;Joseph W. Iverson ,&nbsp;John Jasper ,&nbsp;Dustin G. Mixon","doi":"10.1016/j.laa.2024.08.002","DOIUrl":"10.1016/j.laa.2024.08.002","url":null,"abstract":"<div><p>In 1992, Godsil and Hensel published a ground-breaking study of distance-regular antipodal covers of the complete graph that, among other things, introduced an important connection with equi-isoclinic subspaces. This connection seems to have been overlooked, as many of its immediate consequences have never been detailed in the literature. To correct this situation, we first describe how Godsil and Hensel's machine uses representation theory to construct equi-isoclinic tight fusion frames. Applying this machine to Mathon's construction produces <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> equi-isoclinic planes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> for any even prime power <span><math><mi>q</mi><mo>&gt;</mo><mn>2</mn></math></span>. Despite being an application of the 30-year-old Godsil–Hensel result, infinitely many of these parameters have never been enunciated in the literature. Following ideas from Et-Taoui, we then investigate a fruitful interplay with complex symmetric conference matrices.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 240-249"},"PeriodicalIF":1.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenvalue bounds of the Kirchhoff Laplacian 基尔霍夫拉普拉斯函数的特征值边界
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-06 DOI: 10.1016/j.laa.2024.08.001
Oliver Knill
{"title":"Eigenvalue bounds of the Kirchhoff Laplacian","authors":"Oliver Knill","doi":"10.1016/j.laa.2024.08.001","DOIUrl":"10.1016/j.laa.2024.08.001","url":null,"abstract":"<div><p>We prove the inequality <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> for all the eigenvalues <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the Kirchhoff matrix <em>K</em> of a finite simple graph or quiver with vertex degrees <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and assuming <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Without multiple connections, the inequality <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mrow><mi>max</mi></mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span> holds. A consequence in the finite simple graph or multi-graph case is that the pseudo determinant <span><math><mrow><mi>Det</mi></mrow><mo>(</mo><mi>K</mi><mo>)</mo></math></span> counting the number of rooted spanning trees has an upper bound <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and that <span><math><mrow><mi>det</mi></mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>K</mi><mo>)</mo></math></span> counting the number of rooted spanning forests has an upper bound <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"701 ","pages":"Pages 1-21"},"PeriodicalIF":1.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonassociative algebras of biderivation-type 双活化型非关联代数
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-06 DOI: 10.1016/j.laa.2024.08.003
Saïd Benayadi , Hassan Oubba
{"title":"Nonassociative algebras of biderivation-type","authors":"Saïd Benayadi ,&nbsp;Hassan Oubba","doi":"10.1016/j.laa.2024.08.003","DOIUrl":"10.1016/j.laa.2024.08.003","url":null,"abstract":"<div><p>The main purpose of this paper is to study the class of Lie-admissible algebras <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mo>.</mo><mo>)</mo></math></span> such that its product is a biderivation of the Lie algebra <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mo>[</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>]</mo><mo>)</mo></math></span>, where <span><math><mo>[</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>]</mo></math></span> is the commutator of the algebra <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mo>.</mo><mo>)</mo></math></span>. First, we provide characterizations of algebras in this class. Furthermore, we show that this class of nonassociative algebras includes Lie algebras, symmetric Leibniz algebras, Lie-admissible left (or right) Leibniz algebras, Milnor algebras, and LR-algebras. Then, we establish results on the structure of these algebras in the case that the underlying Lie algebras are perfect (in particular, semisimple Lie algebras). In addition, we then study flexible <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras, showing in particular that these algebras are extensions of Lie algebras in the category of flexible <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras. Finally, we study left-symmetric <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras, in particular we are interested in flat pseudo-Euclidean Lie algebras where the associated Levi-Civita products define <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras on the underlying vector spaces of these Lie algebras. In addition, we obtain an inductive description of all these Lie algebras and their Levi-Civita products (in particular, for all signatures in the case of real Lie algebras).</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"701 ","pages":"Pages 22-60"},"PeriodicalIF":1.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fraction of an Sn-orbit on a hyperplane 超平面上 Sn 轨道的分数
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-02 DOI: 10.1016/j.laa.2024.07.022
Brendan Pawlowski
{"title":"The fraction of an Sn-orbit on a hyperplane","authors":"Brendan Pawlowski","doi":"10.1016/j.laa.2024.07.022","DOIUrl":"10.1016/j.laa.2024.07.022","url":null,"abstract":"<div><p>Huang, McKinnon, and Satriano conjectured that if <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> has distinct coordinates and <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, then a hyperplane through the origin other than <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> contains at most <span><math><mn>2</mn><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>!</mo></math></span> of the vectors obtained by permuting the coordinates of <em>v</em>. We prove this conjecture.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 98-111"},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified framework for the Expander Mixing Lemma for irregular graphs and its applications 不规则图的扩展混合定理及其应用的统一框架
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-02 DOI: 10.1016/j.laa.2024.07.023
Aida Abiad, Sjanne Zeijlemaker
{"title":"A unified framework for the Expander Mixing Lemma for irregular graphs and its applications","authors":"Aida Abiad,&nbsp;Sjanne Zeijlemaker","doi":"10.1016/j.laa.2024.07.023","DOIUrl":"10.1016/j.laa.2024.07.023","url":null,"abstract":"<div><p>A unified framework for the Expander Mixing Lemma for irregular graphs using adjacency eigenvalues is presented, as well as two new versions of it. While the existing Expander Mixing Lemmas for irregular graphs make use of the notion of volume (the sum of degrees within a vertex set), we instead propose to use the Perron eigenvector entries as vertex weights, which is a way to regularize the graph. This provides a new application of weight partitions of graphs. The new Expander Mixing Lemma versions are then applied to obtain several eigenvalue bounds for NP-hard parameters such as the zero forcing number, the vertex integrity and the routing number of a graph.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"702 ","pages":"Pages 19-45"},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003136/pdfft?md5=a40f6c7aed91ef2696345f3c936489a0&pid=1-s2.0-S0024379524003136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SVD, joint-MVD, Berry phase, and generic loss of rank for a matrix valued function of 2 parameters 两个参数的矩阵值函数的 SVD、联合-MVD、贝里相位和一般秩损失
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-07-29 DOI: 10.1016/j.laa.2024.07.021
Luca Dieci , Alessandro Pugliese
{"title":"SVD, joint-MVD, Berry phase, and generic loss of rank for a matrix valued function of 2 parameters","authors":"Luca Dieci ,&nbsp;Alessandro Pugliese","doi":"10.1016/j.laa.2024.07.021","DOIUrl":"10.1016/j.laa.2024.07.021","url":null,"abstract":"<div><p>In this work we consider generic losses of rank for complex valued matrix functions depending on two parameters. We give theoretical results that characterize parameter regions where these losses of rank occur. Our main results consist in showing how following an appropriate smooth SVD along a closed loop it is possible to monitor the Berry phases accrued by the singular vectors to decide if –inside the loop– there are parameter values where a loss of rank takes place. It will be needed to use a new construction of a smooth SVD, which we call the “joint-MVD” (minimum variation decomposition).</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"700 ","pages":"Pages 137-157"},"PeriodicalIF":1.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003112/pdfft?md5=cc53bdd710f8be0bdb4594e9d9ff6196&pid=1-s2.0-S0024379524003112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-sided bounds for the tracial seminorm of multilinear Schur multipliers 多线性舒尔乘数的三边半式的两边界限
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-07-26 DOI: 10.1016/j.laa.2024.07.019
Anna Skripka
{"title":"Two-sided bounds for the tracial seminorm of multilinear Schur multipliers","authors":"Anna Skripka","doi":"10.1016/j.laa.2024.07.019","DOIUrl":"10.1016/j.laa.2024.07.019","url":null,"abstract":"<div><p>We establish novel two-sided bounds for the tracial seminorm of multilinear Schur multipliers that tighten previously known bounds. The result is obtained by a newly developed method based on polynomial chaoses.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"700 ","pages":"Pages 158-183"},"PeriodicalIF":1.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unisingular subgroups of symplectic groups over F2 F2 上交映群的单星形子群
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-07-26 DOI: 10.1016/j.laa.2024.07.020
Alexandre Zalesski
{"title":"Unisingular subgroups of symplectic groups over F2","authors":"Alexandre Zalesski","doi":"10.1016/j.laa.2024.07.020","DOIUrl":"10.1016/j.laa.2024.07.020","url":null,"abstract":"<div><p>A linear group is called <em>unisingular</em> if every element of it has eigenvalue 1. In this paper we develop some general machinery for the study of unisingular irreducible linear groups. A motivation for the study of such groups comes from several sources, including algebraic geometry, Galois theory, finite group theory and representation theory. In particular, a certain aspect of the theory of abelian varieties requires the knowledge of unisingular irreducible subgroups of the symplectic groups over the field of two elements, and in this paper we concentrate on this special case of the general problem. A more special but important question is that of the existence of such subgroups in the symplectic groups of particular degrees. We answer this question for almost all degrees <span><math><mn>2</mn><mi>n</mi><mo>&lt;</mo><mn>250</mn></math></span>, specifically, the question remains open only 7 values of <em>n</em>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"700 ","pages":"Pages 80-136"},"PeriodicalIF":1.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric bilinear forms, superalgebras and integer matrix factorization 对称双线性形式、超代数和整数矩阵因式分解
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-07-25 DOI: 10.1016/j.laa.2024.07.017
Dan Fretwell, Jenny Roberts
{"title":"Symmetric bilinear forms, superalgebras and integer matrix factorization","authors":"Dan Fretwell,&nbsp;Jenny Roberts","doi":"10.1016/j.laa.2024.07.017","DOIUrl":"10.1016/j.laa.2024.07.017","url":null,"abstract":"<div><p>We construct and investigate certain (unbalanced) superalgebra structures on <span><math><msub><mrow><mtext>End</mtext></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, with <em>K</em> a field of characteristic 0 and <em>V</em> a finite dimensional <em>K</em>-vector space (of dimension <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>). These structures are induced by a choice of non-degenerate symmetric bilinear form <em>B</em> on <em>V</em> and a choice of non-zero base vector <span><math><mi>w</mi><mo>∈</mo><mi>V</mi></math></span>. After exploring the construction further, we apply our results to certain questions concerning integer matrix factorization and isometry of integral lattices.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"700 ","pages":"Pages 61-79"},"PeriodicalIF":1.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003070/pdfft?md5=068596b9de91e6058e5b4d54b9849cbb&pid=1-s2.0-S0024379524003070-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信