{"title":"An isospectral transformation between Hessenberg–bidiagonal matrix pencils and Hessenberg matrices without using subtraction","authors":"Katsuki Kobayashi , Kazuki Maeda , Satoshi Tsujimoto","doi":"10.1016/j.laa.2025.04.022","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce an eigenvalue-preserving transformation algorithm from the generalized eigenvalue problem by matrix pencil of the upper and the lower bidiagonal matrices into a standard eigenvalue problem while preserving sparsity, using the theory of orthogonal polynomials. The procedure is formulated without subtraction, which causes numerical instability. Furthermore, the algorithm is discussed for the extended case where the upper bidiagonal matrix is of Hessenberg type.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 272-302"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001788","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce an eigenvalue-preserving transformation algorithm from the generalized eigenvalue problem by matrix pencil of the upper and the lower bidiagonal matrices into a standard eigenvalue problem while preserving sparsity, using the theory of orthogonal polynomials. The procedure is formulated without subtraction, which causes numerical instability. Furthermore, the algorithm is discussed for the extended case where the upper bidiagonal matrix is of Hessenberg type.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.