{"title":"On the stability of pure point spectrum of discrete operators with long-range hopping","authors":"Wenwen Jian , Li Wen","doi":"10.1016/j.laa.2025.04.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>T</em> be a multiplication operator on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> with pure-point and simple spectrum. In this paper, we study perturbation of <em>T</em> by some off-diagonal Toeplitz operator <em>V</em> with its matrix elements <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> satisfying <span><math><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>|</mo><mo>≤</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>r</mi><msup><mrow><mi>log</mi></mrow><mrow><mi>t</mi></mrow></msup><mo></mo><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>m</mi><mo>−</mo><mi>n</mi><mo>|</mo><mo>)</mo></mrow></msup></math></span> <span><math><mo>(</mo><mi>t</mi><mo>></mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Under some explicit conditions on the eigenvalues of <em>T</em> and for small enough <em>ε</em>, we prove via a KAM diagonalization method that the operator <span><math><mi>T</mi><mo>+</mo><mi>ε</mi><mi>V</mi></math></span> has pure-point spectrum with eigenfunctions <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub></math></span> obeying <span><math><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mn>2</mn><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>log</mi></mrow><mrow><mi>t</mi></mrow></msup><mo></mo><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>k</mi><mo>−</mo><mi>n</mi><mo>|</mo><mo>)</mo></mrow></msup></math></span> for all <span><math><mi>n</mi><mo>,</mo><mi>k</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 152-173"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001776","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let T be a multiplication operator on with pure-point and simple spectrum. In this paper, we study perturbation of T by some off-diagonal Toeplitz operator V with its matrix elements satisfying . Under some explicit conditions on the eigenvalues of T and for small enough ε, we prove via a KAM diagonalization method that the operator has pure-point spectrum with eigenfunctions obeying for all .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.