{"title":"有限超群的不可约作用与关联方案","authors":"Gang Chen , Bangteng Xu","doi":"10.1016/j.laa.2025.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>The action of a finite hypergroup, introduced by Sunder and Wildberger <span><span>[14]</span></span>, is an important tool in the study of finite hypergroups. It is defined via column-stochastic matrices. Finite hypergroups have close connections to association schemes. Actions of finite hypergroups have been used to construct association schemes in Sunder and Wildberger <span><span>[14]</span></span> and Xu <span><span>[22]</span></span>. In this paper, we study the characterizations of irreducible actions of finite hypergroups and investigate the constructions of association schemes arising from these irreducible actions. We will first obtain the characterizations of irreducible actions of finite hypergroups through the irreducibility of certain stochastic matrices. Then we establish some sufficient and necessary conditions under which an irreducible action of a finite hypergroup gives rise to an association scheme.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 26-49"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreducible actions of finite hypergroups and association schemes\",\"authors\":\"Gang Chen , Bangteng Xu\",\"doi\":\"10.1016/j.laa.2025.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The action of a finite hypergroup, introduced by Sunder and Wildberger <span><span>[14]</span></span>, is an important tool in the study of finite hypergroups. It is defined via column-stochastic matrices. Finite hypergroups have close connections to association schemes. Actions of finite hypergroups have been used to construct association schemes in Sunder and Wildberger <span><span>[14]</span></span> and Xu <span><span>[22]</span></span>. In this paper, we study the characterizations of irreducible actions of finite hypergroups and investigate the constructions of association schemes arising from these irreducible actions. We will first obtain the characterizations of irreducible actions of finite hypergroups through the irreducibility of certain stochastic matrices. Then we establish some sufficient and necessary conditions under which an irreducible action of a finite hypergroup gives rise to an association scheme.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"720 \",\"pages\":\"Pages 26-49\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001685\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Irreducible actions of finite hypergroups and association schemes
The action of a finite hypergroup, introduced by Sunder and Wildberger [14], is an important tool in the study of finite hypergroups. It is defined via column-stochastic matrices. Finite hypergroups have close connections to association schemes. Actions of finite hypergroups have been used to construct association schemes in Sunder and Wildberger [14] and Xu [22]. In this paper, we study the characterizations of irreducible actions of finite hypergroups and investigate the constructions of association schemes arising from these irreducible actions. We will first obtain the characterizations of irreducible actions of finite hypergroups through the irreducibility of certain stochastic matrices. Then we establish some sufficient and necessary conditions under which an irreducible action of a finite hypergroup gives rise to an association scheme.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.