{"title":"给定大小θ1,2,5自由图的谱极值的扩展","authors":"Chang Liu, Jianping Li","doi":"10.1016/j.laa.2025.04.010","DOIUrl":null,"url":null,"abstract":"<div><div>The Brualdi-Hoffman-Turán type problem is an important category of spectral Turán problems, focusing on determining the maximum spectral radius of an <span><math><mi>F</mi></math></span>-free graph with <em>m</em> edges. This topic has received considerable attention in recent years. Let <span><math><mi>G</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> denote the set of <span><math><mi>F</mi></math></span>-free graphs with <em>m</em> edges and no isolated vertices. Define <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> as the theta graph, consisting of three internally disjoint paths of lengths <em>p</em>, <em>q</em>, and <em>r</em>, sharing the same pair of endpoints. Recently, Lu et al. (2024) <span><span>[16]</span></span> determined that the unique extremal graph with the maximum spectral radius in <span><math><mi>G</mi><mo>(</mo><mi>m</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msub><mrow><mi>S</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>3</mn></mrow></msub></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>38</mn></math></span>. However, the extremal graph is well-defined only when <span><math><mi>m</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. In this paper, we employ a new technique to characterize the graphs with the maximum spectral radius among all <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn></mrow></msub></math></span>-free graphs for <span><math><mi>m</mi><mo>≥</mo><mn>39</mn></math></span>, where <span><math><mi>m</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> or <span><math><mi>m</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. Finally, we propose two conjectures that generalize Zhai et al. (2021) <span><span>[31]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"719 ","pages":"Pages 136-157"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions on spectral extrema of θ1,2,5-free graphs with given size\",\"authors\":\"Chang Liu, Jianping Li\",\"doi\":\"10.1016/j.laa.2025.04.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Brualdi-Hoffman-Turán type problem is an important category of spectral Turán problems, focusing on determining the maximum spectral radius of an <span><math><mi>F</mi></math></span>-free graph with <em>m</em> edges. This topic has received considerable attention in recent years. Let <span><math><mi>G</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> denote the set of <span><math><mi>F</mi></math></span>-free graphs with <em>m</em> edges and no isolated vertices. Define <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> as the theta graph, consisting of three internally disjoint paths of lengths <em>p</em>, <em>q</em>, and <em>r</em>, sharing the same pair of endpoints. Recently, Lu et al. (2024) <span><span>[16]</span></span> determined that the unique extremal graph with the maximum spectral radius in <span><math><mi>G</mi><mo>(</mo><mi>m</mi><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msub><mrow><mi>S</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>3</mn></mrow></msub></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>38</mn></math></span>. However, the extremal graph is well-defined only when <span><math><mi>m</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. In this paper, we employ a new technique to characterize the graphs with the maximum spectral radius among all <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn></mrow></msub></math></span>-free graphs for <span><math><mi>m</mi><mo>≥</mo><mn>39</mn></math></span>, where <span><math><mi>m</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span> or <span><math><mi>m</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>. Finally, we propose two conjectures that generalize Zhai et al. (2021) <span><span>[31]</span></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"719 \",\"pages\":\"Pages 136-157\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001600\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001600","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Brualdi-Hoffman-Turán型问题是谱Turán问题的一个重要类别,其重点是确定具有m条边的无f图的最大谱半径。近年来,这个话题受到了相当大的关注。设G(m,F)表示有m条边且无孤立顶点的无F图的集合。定义θp,q,r为θ图,由三个内部不相交的路径组成,长度为p,q和r,共享相同的端点对。最近,Lu et al.(2024)[16]确定了在G(m,θ1,2,5)中光谱半径最大的唯一极值图是Sm+63,3,当m≥38时。然而,极值图只有在m≡0(mod3)时才有定义。在本文中,我们采用了一种新的技术来刻画m≥39时,m≡1(mod3)或m≡2(mod3)的所有θ1,2,5自由图中具有最大谱半径的图。最后,我们提出了两个推测来推广Zhai et al. (2021) b[31]。
Extensions on spectral extrema of θ1,2,5-free graphs with given size
The Brualdi-Hoffman-Turán type problem is an important category of spectral Turán problems, focusing on determining the maximum spectral radius of an -free graph with m edges. This topic has received considerable attention in recent years. Let denote the set of -free graphs with m edges and no isolated vertices. Define as the theta graph, consisting of three internally disjoint paths of lengths p, q, and r, sharing the same pair of endpoints. Recently, Lu et al. (2024) [16] determined that the unique extremal graph with the maximum spectral radius in is for . However, the extremal graph is well-defined only when . In this paper, we employ a new technique to characterize the graphs with the maximum spectral radius among all -free graphs for , where or . Finally, we propose two conjectures that generalize Zhai et al. (2021) [31].
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.