{"title":"关于中心化矩阵代数的Frobenius推广","authors":"Qikai Wang, Haiyan Zhu","doi":"10.1016/j.laa.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the conditions under which the centralizer algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> of a matrix <span><math><mi>c</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is a (separable) Frobenius extension of the algebra <em>R</em>. For an algebra <em>R</em> over an integral domain <span><math><mi>k</mi></math></span>, we provide necessary and sufficient conditions for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>R</mi></math></span> to be a (separable) Frobenius extension when <em>c</em> is in Jordan canonical form with eigenvalues in <span><math><mi>k</mi></math></span>. We extend this analysis to arbitrary matrices over a field and derive conditions for matrix diagonalizability through Frobenius extensions.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 18-37"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius extensions about centralizer matrix algebras\",\"authors\":\"Qikai Wang, Haiyan Zhu\",\"doi\":\"10.1016/j.laa.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the conditions under which the centralizer algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> of a matrix <span><math><mi>c</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is a (separable) Frobenius extension of the algebra <em>R</em>. For an algebra <em>R</em> over an integral domain <span><math><mi>k</mi></math></span>, we provide necessary and sufficient conditions for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>R</mi></math></span> to be a (separable) Frobenius extension when <em>c</em> is in Jordan canonical form with eigenvalues in <span><math><mi>k</mi></math></span>. We extend this analysis to arbitrary matrices over a field and derive conditions for matrix diagonalizability through Frobenius extensions.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 18-37\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002861\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002861","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Frobenius extensions about centralizer matrix algebras
This paper investigates the conditions under which the centralizer algebra of a matrix is a (separable) Frobenius extension of the algebra R. For an algebra R over an integral domain , we provide necessary and sufficient conditions for to be a (separable) Frobenius extension when c is in Jordan canonical form with eigenvalues in . We extend this analysis to arbitrary matrices over a field and derive conditions for matrix diagonalizability through Frobenius extensions.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.