关于中心化矩阵代数的Frobenius推广

IF 1.1 3区 数学 Q1 MATHEMATICS
Qikai Wang, Haiyan Zhu
{"title":"关于中心化矩阵代数的Frobenius推广","authors":"Qikai Wang,&nbsp;Haiyan Zhu","doi":"10.1016/j.laa.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the conditions under which the centralizer algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> of a matrix <span><math><mi>c</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is a (separable) Frobenius extension of the algebra <em>R</em>. For an algebra <em>R</em> over an integral domain <span><math><mi>k</mi></math></span>, we provide necessary and sufficient conditions for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>R</mi></math></span> to be a (separable) Frobenius extension when <em>c</em> is in Jordan canonical form with eigenvalues in <span><math><mi>k</mi></math></span>. We extend this analysis to arbitrary matrices over a field and derive conditions for matrix diagonalizability through Frobenius extensions.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 18-37"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius extensions about centralizer matrix algebras\",\"authors\":\"Qikai Wang,&nbsp;Haiyan Zhu\",\"doi\":\"10.1016/j.laa.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the conditions under which the centralizer algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> of a matrix <span><math><mi>c</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is a (separable) Frobenius extension of the algebra <em>R</em>. For an algebra <em>R</em> over an integral domain <span><math><mi>k</mi></math></span>, we provide necessary and sufficient conditions for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>c</mi><mo>,</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>R</mi></math></span> to be a (separable) Frobenius extension when <em>c</em> is in Jordan canonical form with eigenvalues in <span><math><mi>k</mi></math></span>. We extend this analysis to arbitrary matrices over a field and derive conditions for matrix diagonalizability through Frobenius extensions.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 18-37\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002861\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002861","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了矩阵c∈Mn(R)的中心代数Sn(c,R)是代数R的(可分)Frobenius扩展的条件。对于积分域k上的代数R,给出了当c是约当正则形式且特征值在k上时Sn(c,R)/R是(可分)Frobenius扩展的充分必要条件。我们将这一分析推广到域上的任意矩阵,并通过Frobenius扩展导出了矩阵可对角化的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius extensions about centralizer matrix algebras
This paper investigates the conditions under which the centralizer algebra Sn(c,R) of a matrix cMn(R) is a (separable) Frobenius extension of the algebra R. For an algebra R over an integral domain k, we provide necessary and sufficient conditions for Sn(c,R)/R to be a (separable) Frobenius extension when c is in Jordan canonical form with eigenvalues in k. We extend this analysis to arbitrary matrices over a field and derive conditions for matrix diagonalizability through Frobenius extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信