每个2n × 2n的复辛矩阵都是n + 1个辛膨胀的乘积

IF 1.1 3区 数学 Q1 MATHEMATICS
Ralph John de la Cruz, William Nierop
{"title":"每个2n × 2n的复辛矩阵都是n + 1个辛膨胀的乘积","authors":"Ralph John de la Cruz,&nbsp;William Nierop","doi":"10.1016/j.laa.2025.06.018","DOIUrl":null,"url":null,"abstract":"<div><div>A <span><math><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span> complex matrix <em>A</em> is symplectic if <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>J</mi><mi>A</mi><mo>=</mo><mi>J</mi></math></span> where <span><math><mi>J</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr></mtable><mo>]</mo></mrow></math></span>. We say that <em>A</em> is a <em>symplectic dilatation</em> if <em>A</em> is symplectic and is similar to <span><math><mo>[</mo><mi>a</mi><mo>]</mo><mo>⊕</mo><mo>[</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo><mo>⊕</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></math></span>. If <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>, we show that every <span><math><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span> complex symplectic matrix <em>A</em> is a product of <em>n</em> symplectic dilatations except when <em>A</em> is similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⊕</mo><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></math></span>, in which case <em>A</em> is a product of <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> symplectic dilatations.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 242-256"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Every 2n-by-2n complex symplectic matrix is a product of n + 1 symplectic dilatations\",\"authors\":\"Ralph John de la Cruz,&nbsp;William Nierop\",\"doi\":\"10.1016/j.laa.2025.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <span><math><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span> complex matrix <em>A</em> is symplectic if <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>J</mi><mi>A</mi><mo>=</mo><mi>J</mi></math></span> where <span><math><mi>J</mi><mo>=</mo><mrow><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr></mtable><mo>]</mo></mrow></math></span>. We say that <em>A</em> is a <em>symplectic dilatation</em> if <em>A</em> is symplectic and is similar to <span><math><mo>[</mo><mi>a</mi><mo>]</mo><mo>⊕</mo><mo>[</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo><mo>⊕</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></math></span>. If <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>, we show that every <span><math><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span> complex symplectic matrix <em>A</em> is a product of <em>n</em> symplectic dilatations except when <em>A</em> is similar to <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⊕</mo><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></math></span>, in which case <em>A</em> is a product of <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> symplectic dilatations.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"724 \",\"pages\":\"Pages 242-256\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002708\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002708","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当ATJA=J,其中J=[0In−In0]时,2n×2n复矩阵A是辛矩阵。如果A是辛的并且与[A]⊕[A−1]⊕I2n−2相似,我们说A是辛膨胀。如果n>;1,我们证明了除了当A与J2(−1)⊕- I2n−2相似时,每个2n×2n复辛矩阵A是n个辛膨胀的乘积,在这种情况下A是n+1个辛膨胀的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Every 2n-by-2n complex symplectic matrix is a product of n + 1 symplectic dilatations
A 2n×2n complex matrix A is symplectic if ATJA=J where J=[0InIn0]. We say that A is a symplectic dilatation if A is symplectic and is similar to [a][a1]I2n2. If n>1, we show that every 2n×2n complex symplectic matrix A is a product of n symplectic dilatations except when A is similar to J2(1)I2n2, in which case A is a product of n+1 symplectic dilatations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信