Mutually orthogonal unitary and orthogonal matrices

IF 1.1 3区 数学 Q1 MATHEMATICS
Zhiwei Song, Lin Chen, Saiqi Liu
{"title":"Mutually orthogonal unitary and orthogonal matrices","authors":"Zhiwei Song,&nbsp;Lin Chen,&nbsp;Saiqi Liu","doi":"10.1016/j.laa.2025.06.025","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the concept of order-<em>d n</em>-OU and <em>n</em>-OO sets, which consist of <em>n</em> mutually orthogonal order-<em>d</em> unitary and real orthogonal matrices under Hilbert-Schmidt inner product. We show that for arbitrary <em>d</em>, there exists order-<em>d</em> <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-OU set. However, real orthogonal matrices show strict limits, as we prove that an order-three <em>n</em>-OO set exists only if <span><math><mi>n</mi><mo>≤</mo><mn>4</mn></math></span>. As an application in quantum information theory, we establish that the maximum number of unextendible maximally entangled bases within a real two-qutrit system is four. Further, we propose a new matrix decomposition approach, defining an <em>n</em>-OU (resp. <em>n</em>-OO) decomposition for a matrix as a linear combination of <em>n</em> matrices from an <em>n</em>-OU (resp. <em>n</em>-OO) set. We show that any order-<em>d</em> matrix has a <em>d</em>-OU decomposition. As contrast, we prove the existence of real matrices that do not possess any <em>n</em>-OO decomposition by providing explicit criteria for an order-three real matrix to have an <em>n</em>-OO decomposition.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 1-17"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002848","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concept of order-d n-OU and n-OO sets, which consist of n mutually orthogonal order-d unitary and real orthogonal matrices under Hilbert-Schmidt inner product. We show that for arbitrary d, there exists order-d d2-OU set. However, real orthogonal matrices show strict limits, as we prove that an order-three n-OO set exists only if n4. As an application in quantum information theory, we establish that the maximum number of unextendible maximally entangled bases within a real two-qutrit system is four. Further, we propose a new matrix decomposition approach, defining an n-OU (resp. n-OO) decomposition for a matrix as a linear combination of n matrices from an n-OU (resp. n-OO) set. We show that any order-d matrix has a d-OU decomposition. As contrast, we prove the existence of real matrices that do not possess any n-OO decomposition by providing explicit criteria for an order-three real matrix to have an n-OO decomposition.
相互正交的酉矩阵和正交矩阵
在Hilbert-Schmidt内积下,引入了n- o和n- o阶集合的概念,它们由n个相互正交的n阶酉和实正交矩阵组成。我们证明了对于任意d,存在o -d d2-OU集。然而,实正交矩阵有严格的限制,因为我们证明了只有当n≤4时才存在3阶n- oo集合。作为量子信息论中的一个应用,我们建立了一个实二量子位系统中不可扩展最大纠缠基的最大数目为4个。此外,我们提出了一种新的矩阵分解方法,定义了一个n-OU矩阵。n- oo)分解矩阵为n个矩阵的线性组合,从n- ou(分别为n- ou)。n-OO)集。我们证明了任何一个d阶矩阵都有一个d-OU分解。作为对比,我们通过提供三阶实矩阵具有n-OO分解的显式准则来证明不具有任何n-OO分解的实矩阵的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信