{"title":"在Redheffer矩阵的最大奇异向量上","authors":"François Clément, Stefan Steinerberger","doi":"10.1016/j.laa.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>The Redheffer matrix <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span> is defined by setting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>j</mi><mo>=</mo><mn>1</mn></math></span> or <em>i</em> divides <em>j</em> and 0 otherwise. One of its many interesting properties is that <span><math><mi>det</mi><mo></mo><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span> is equivalent to the Riemann hypothesis. The singular vector <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> corresponding to the largest singular value carries a lot of information about the prime factorization of the integers: <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is small if <em>k</em> is prime and large if <em>k</em> has many divisors. We prove that the vector <em>w</em> whose <em>k</em>-th entry is the sum of the inverse divisors of <em>k</em>, <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>d</mi><mo>|</mo><mi>k</mi></mrow></msub><mn>1</mn><mo>/</mo><mi>d</mi></math></span>, is close to a singular vector in a precise quantitative sense.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 96-114"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the largest singular vector of the Redheffer matrix\",\"authors\":\"François Clément, Stefan Steinerberger\",\"doi\":\"10.1016/j.laa.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Redheffer matrix <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span> is defined by setting <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mi>j</mi><mo>=</mo><mn>1</mn></math></span> or <em>i</em> divides <em>j</em> and 0 otherwise. One of its many interesting properties is that <span><math><mi>det</mi><mo></mo><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span> is equivalent to the Riemann hypothesis. The singular vector <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> corresponding to the largest singular value carries a lot of information about the prime factorization of the integers: <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is small if <em>k</em> is prime and large if <em>k</em> has many divisors. We prove that the vector <em>w</em> whose <em>k</em>-th entry is the sum of the inverse divisors of <em>k</em>, <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>d</mi><mo>|</mo><mi>k</mi></mrow></msub><mn>1</mn><mo>/</mo><mi>d</mi></math></span>, is close to a singular vector in a precise quantitative sense.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 96-114\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002873\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002873","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the largest singular vector of the Redheffer matrix
The Redheffer matrix is defined by setting if or i divides j and 0 otherwise. One of its many interesting properties is that is equivalent to the Riemann hypothesis. The singular vector corresponding to the largest singular value carries a lot of information about the prime factorization of the integers: is small if k is prime and large if k has many divisors. We prove that the vector w whose k-th entry is the sum of the inverse divisors of k, , is close to a singular vector in a precise quantitative sense.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.