Linear Algebra and its Applications最新文献

筛选
英文 中文
On the rank structure of the Moore-Penrose inverse of singular k-banded matrices 关于奇异 k 带状矩阵的摩尔-彭罗斯逆的秩结构
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-21 DOI: 10.1016/j.laa.2024.08.011
M.I. Bueno , Susana Furtado
{"title":"On the rank structure of the Moore-Penrose inverse of singular k-banded matrices","authors":"M.I. Bueno ,&nbsp;Susana Furtado","doi":"10.1016/j.laa.2024.08.011","DOIUrl":"10.1016/j.laa.2024.08.011","url":null,"abstract":"<div><p>It is well-established that, for an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> singular <em>k</em>-banded complex matrix <em>B</em>, the submatrices of the Moore-Penrose inverse <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>†</mo></mrow></msup></math></span> of <em>B</em> located strictly below (resp. above) its <em>k</em>th superdiagonal (resp. <em>k</em>th subdiagonal) have a certain bounded rank <em>s</em> depending on <em>n</em>, <em>k</em> and rank<em>B</em>. In this case, <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>†</mo></mrow></msup></math></span> is said to satisfy a semiseparability condition. In this paper our focus is on singular strictly <em>k</em>-banded complex matrices <em>B</em>, and we show that the Moore-Penrose inverse of such a matrix satisfies a stronger condition, called generator representability. This means that there exist two matrices of rank at most <em>s</em> whose parts strictly below the <em>k</em>th diagonal (resp. above the <em>k</em>th subdiagonal) coincide with the same parts of <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>†</mo></mrow></msup></math></span>. When <span><math><mi>n</mi><mo>≥</mo><mn>3</mn><mi>k</mi></math></span>, we prove that <em>s</em> is precisely the minimum rank of these two matrices. We also illustrate through examples that when <span><math><mi>n</mi><mo>&lt;</mo><mn>3</mn><mi>k</mi></math></span> those matrices may have rank less than <em>s</em>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The determinant of {±1}-matrices and oriented hypergraphs {±1}矩阵和定向超图的行列式
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-20 DOI: 10.1016/j.laa.2024.08.013
Lucas J. Rusnak , Josephine Reynes , Russell Li , Eric Yan , Justin Yu
{"title":"The determinant of {±1}-matrices and oriented hypergraphs","authors":"Lucas J. Rusnak ,&nbsp;Josephine Reynes ,&nbsp;Russell Li ,&nbsp;Eric Yan ,&nbsp;Justin Yu","doi":"10.1016/j.laa.2024.08.013","DOIUrl":"10.1016/j.laa.2024.08.013","url":null,"abstract":"<div><p>The determinants of <span><math><mo>{</mo><mo>±</mo><mn>1</mn><mo>}</mo></math></span>-matrices are calculated via the oriented hypergraphic Laplacian and summing over incidence generalizations of vertex cycle-covers. These cycle-covers are signed and partitioned into families based on their hyperedge containment. Every non-edge-monic family is shown to contribute a net value of 0 to the Laplacian, while each edge-monic family is shown to sum to the absolute value of the determinant of the original incidence matrix. Simple symmetries are identified as well as their relationship to Hadamard's maximum determinant problem. Finally, the entries of the incidence matrix are reclaimed using only the signs of an adjacency-minimal set of cycle-covers from an edge-monic family.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete equitable decompositions 完整的公平分解
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-14 DOI: 10.1016/j.laa.2024.08.008
Joseph Drapeau , Joseph Henderson , Peter Seely , Dallas Smith , Benjamin Webb
{"title":"Complete equitable decompositions","authors":"Joseph Drapeau ,&nbsp;Joseph Henderson ,&nbsp;Peter Seely ,&nbsp;Dallas Smith ,&nbsp;Benjamin Webb","doi":"10.1016/j.laa.2024.08.008","DOIUrl":"10.1016/j.laa.2024.08.008","url":null,"abstract":"<div><p>A classical result in spectral graph theory states that if a graph <em>G</em> has an equitable partition <em>π</em> then the eigenvalues of the divisor graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> are a subset of its eigenvalues, i.e. <span><math><mi>σ</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>⊆</mo><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. A natural question is whether it is possible to recover the remaining eigenvalues <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>σ</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> in a similar manner. Here we show that any weighted undirected graph with nontrivial equitable partition can be decomposed into a number of subgraphs whose collective spectra contain these remaining eigenvalues. Using this decomposition, which we refer to as a complete equitable decomposition, we introduce an algorithm for finding the eigenvalues of an undirected graph (symmetric matrix) with a nontrivial equitable partition. Under mild assumptions on this equitable partition we show that we can find eigenvalues of such a graph faster using this method when compared to standard methods. This is potentially useful as many real-world data sets are quite large and have a nontrivial equitable partition.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On prescribed characteristic polynomials 关于规定特征多项式
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-13 DOI: 10.1016/j.laa.2024.08.010
Peter Danchev , Esther García , Miguel Gómez Lozano
{"title":"On prescribed characteristic polynomials","authors":"Peter Danchev ,&nbsp;Esther García ,&nbsp;Miguel Gómez Lozano","doi":"10.1016/j.laa.2024.08.010","DOIUrl":"10.1016/j.laa.2024.08.010","url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a field. We show that given any <em>n</em>th degree monic polynomial <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and any matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> whose trace coincides with the trace of <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and consisting in its main diagonal of <em>k</em> 0-blocks of order one, with <span><math><mi>k</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, and an invertible non-derogatory block of order <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span>, we can construct a square-zero matrix <em>N</em> such that the characteristic polynomial of <span><math><mi>A</mi><mo>+</mo><mi>N</mi></math></span> is exactly <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. We also show that the restriction <span><math><mi>k</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> is necessary in the sense that, when the equality <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> holds, not every characteristic polynomial having the same trace as <em>A</em> can be obtained by adding a square-zero matrix. Finally, we apply our main result to decompose matrices into the sum of a square-zero matrix and some other matrix which is either diagonalizable, invertible, potent or torsion.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003318/pdfft?md5=667be3a9d9b553d45f982a25bb94c2e9&pid=1-s2.0-S0024379524003318-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New type bounds for energy of graphs and spread of matrices 图的能量和矩阵扩散的新类型界限
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-12 DOI: 10.1016/j.laa.2024.08.009
Mohammad Reza Oboudi
{"title":"New type bounds for energy of graphs and spread of matrices","authors":"Mohammad Reza Oboudi","doi":"10.1016/j.laa.2024.08.009","DOIUrl":"10.1016/j.laa.2024.08.009","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The energy of a simple graph &lt;em&gt;G&lt;/em&gt; is defined as the sum of the absolute values of eigenvalues of the adjacency matrix of &lt;em&gt;G&lt;/em&gt;. For a complex matrix &lt;em&gt;M&lt;/em&gt; the spread of &lt;em&gt;M&lt;/em&gt; is the maximum absolute value of the differences between any two eigenvalues of &lt;em&gt;M&lt;/em&gt;. Thus if &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are the eigenvalues of &lt;em&gt;M&lt;/em&gt;, then the spread of &lt;em&gt;M&lt;/em&gt; is &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The spread of a graph &lt;em&gt;G&lt;/em&gt; is defined as the spread of its adjacency matrix and is denoted by &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The inertia of &lt;em&gt;G&lt;/em&gt; is an integer triple &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix of &lt;em&gt;G&lt;/em&gt;. In this paper we find some bounds for energy of graphs in terms of some parameters of graphs such as rank, inertia and spread of graphs. We find some bounds for spread of graphs and matrices that improve the previous bounds. In particular, we show that if &lt;em&gt;G&lt;/em&gt; is a graph with &lt;em&gt;m&lt;/em&gt; edges and inertia &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/math&gt;&lt;/span&gt; and the equality holds if and only if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;munder&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;︸&lt;/mo&gt;&lt;/munder&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;m","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the matricial truncated moment problem. II 关于矩阵截断问题二
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-12 DOI: 10.1016/j.laa.2024.08.007
Conrad Mädler, Konrad Schmüdgen
{"title":"On the matricial truncated moment problem. II","authors":"Conrad Mädler,&nbsp;Konrad Schmüdgen","doi":"10.1016/j.laa.2024.08.007","DOIUrl":"10.1016/j.laa.2024.08.007","url":null,"abstract":"<div><p>We continue the study of truncated matrix-valued moment problems begun in <span><span>[12]</span></span>. Let <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>. Suppose that <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> is a measurable space and <span><math><mi>E</mi></math></span> is a finite-dimensional vector space of measurable mappings of <span><math><mi>X</mi></math></span> into <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, the Hermitian <span><math><mi>q</mi><mo>×</mo><mi>q</mi></math></span> matrices. A linear functional Λ on <span><math><mi>E</mi></math></span> is called a moment functional if there exists a positive <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-valued measure <em>μ</em> on <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> such that <span><math><mi>Λ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>〈</mo><mi>F</mi><mo>,</mo><mi>d</mi><mi>μ</mi><mo>〉</mo></math></span> for <span><math><mi>F</mi><mo>∈</mo><mi>E</mi></math></span>.</p><p>In this paper a number of special topics on the truncated matricial moment problem are treated. We restate a result from <span><span>[11]</span></span> to obtain a matricial version of the flat extension theorem. Assuming that <span><math><mi>X</mi></math></span> is a compact space and all elements of <span><math><mi>E</mi></math></span> are continuous on <span><math><mi>X</mi></math></span> we characterize moment functionals in terms of positivity and obtain an ordered maximal mass representing measure for each moment functional. The set of masses of representing measures at a fixed point and some related sets are studied. The class of commutative matrix moment functionals is investigated. We generalize the apolar scalar product for homogeneous polynomials to the matrix case and apply this to the matricial truncated moment problem.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003288/pdfft?md5=a3e36b081f294697806308ae16a2e22e&pid=1-s2.0-S0024379524003288-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the colength sequence of G-graded algebras 论 G 级代数的长度序列
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-10 DOI: 10.1016/j.laa.2024.08.005
Wesley Quaresma Cota , Antonio Ioppolo , Fabrizio Martino , Ana Cristina Vieira
{"title":"On the colength sequence of G-graded algebras","authors":"Wesley Quaresma Cota ,&nbsp;Antonio Ioppolo ,&nbsp;Fabrizio Martino ,&nbsp;Ana Cristina Vieira","doi":"10.1016/j.laa.2024.08.005","DOIUrl":"10.1016/j.laa.2024.08.005","url":null,"abstract":"<div><p>Let <em>F</em> be a field of characteristic zero and let <em>A</em> be an <em>F</em>-algebra graded by a finite group <em>G</em> of order <em>k</em>. Given a non-negative integer <em>n</em> and a sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of <em>k</em> non-negative integers, we associate a <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-module to <em>A</em>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span>, and we denote its <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-character by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In this paper, for all sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we make explicit the decomposition of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for some important <em>G</em>-graded algebras <em>A</em> and we compute the number <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of irreducibles appearing in all such decompositions. Our main goal is to classify <em>G</em>-graded algebras <em>A</em> such that the sequence <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is bounded by three.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs 完美整数 k 匹配、k 因子临界和图的谱半径
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-08 DOI: 10.1016/j.laa.2024.08.004
Quanbao Zhang , Dandan Fan
{"title":"Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs","authors":"Quanbao Zhang ,&nbsp;Dandan Fan","doi":"10.1016/j.laa.2024.08.004","DOIUrl":"10.1016/j.laa.2024.08.004","url":null,"abstract":"<div><p>A graph <em>G</em> is <em>k</em>-factor-critical if <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> has a perfect matching for any subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi></math></span>. An integer <em>k</em>-matching of <em>G</em> is a function <span><math><mi>h</mi><mo>:</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> satisfying <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>k</mi></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the set of edges incident with <em>v</em>. An integer <em>k</em>-matching <em>h</em> of <em>G</em> is called perfect if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mn>2</mn></math></span>. A graph <em>G</em> has the strong parity property if for every subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with even size, <em>G</em> has a spanning subgraph <em>F</em> with minimum degree at least one such that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>﹨</mo><mi>S</mi></math></span>. In this paper, we provide edge number and spectral conditions for the <em>k</em>-factor-criticality, perfect integer <em>k</em>-matching and strong parity property of a graph, respectively.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demystifying the Karpelevič theorem 揭开卡尔佩列维奇定理的神秘面纱
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-08 DOI: 10.1016/j.laa.2024.08.006
Devon N. Munger, Andrew L. Nickerson, Pietro Paparella
{"title":"Demystifying the Karpelevič theorem","authors":"Devon N. Munger,&nbsp;Andrew L. Nickerson,&nbsp;Pietro Paparella","doi":"10.1016/j.laa.2024.08.006","DOIUrl":"10.1016/j.laa.2024.08.006","url":null,"abstract":"<div><p>The statement of the Karpelevič theorem concerning the location of the eigenvalues of stochastic matrices in the complex plane (known as the Karpelevič region) is long and complicated and his proof methods are, at best, nebulous. Fortunately, an elegant simplification of the statement was provided by Ito—in particular, Ito's theorem asserts that the boundary of the Karpelevič region consists of arcs whose points satisfy a polynomial equation that depends on the endpoints of the arc. Unfortunately, Ito did not prove his version and only showed that it is equivalent.</p><p>More recently, Johnson and Paparella showed that points satisfying Ito's equation belong to the Karpelevič region. Although not the intent of their work, this initiated the process of proving Ito's theorem and hence providing another proof of the Karpelevič theorem.</p><p>The purpose of this work is to continue this effort by showing that an arc appears in the prescribed sector. To this end, it is shown that there is a continuous function <span><math><mi>λ</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>⟶</mo><mi>C</mi></math></span> such that <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>(</mo><mi>α</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, <span><math><mo>∀</mo><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, where <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msup></math></span> is a Type I reduced Ito polynomial. It is also shown that these arcs are simple. Finally, an elementary argument is given to show that points on the boundary of the Karpelevič region are extremal whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equi-isoclinic subspaces, covers of the complete graph, and complex conference matrices 等离子空间、完整图的覆盖和复会议矩阵
IF 1 3区 数学
Linear Algebra and its Applications Pub Date : 2024-08-07 DOI: 10.1016/j.laa.2024.08.002
Matthew Fickus , Joseph W. Iverson , John Jasper , Dustin G. Mixon
{"title":"Equi-isoclinic subspaces, covers of the complete graph, and complex conference matrices","authors":"Matthew Fickus ,&nbsp;Joseph W. Iverson ,&nbsp;John Jasper ,&nbsp;Dustin G. Mixon","doi":"10.1016/j.laa.2024.08.002","DOIUrl":"10.1016/j.laa.2024.08.002","url":null,"abstract":"<div><p>In 1992, Godsil and Hensel published a ground-breaking study of distance-regular antipodal covers of the complete graph that, among other things, introduced an important connection with equi-isoclinic subspaces. This connection seems to have been overlooked, as many of its immediate consequences have never been detailed in the literature. To correct this situation, we first describe how Godsil and Hensel's machine uses representation theory to construct equi-isoclinic tight fusion frames. Applying this machine to Mathon's construction produces <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> equi-isoclinic planes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> for any even prime power <span><math><mi>q</mi><mo>&gt;</mo><mn>2</mn></math></span>. Despite being an application of the 30-year-old Godsil–Hensel result, infinitely many of these parameters have never been enunciated in the literature. Following ideas from Et-Taoui, we then investigate a fruitful interplay with complex symmetric conference matrices.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信