{"title":"Minimum-norm solutions of the non-symmetric semidefinite Procrustes problem","authors":"Nicolas Gillis, Stefano Sicilia","doi":"10.1016/j.laa.2025.06.005","DOIUrl":"10.1016/j.laa.2025.06.005","url":null,"abstract":"<div><div>Given two matrices <span><math><mi>X</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>m</mi></mrow></msup></math></span> and a set <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span>, a Procrustes problem consists in finding a matrix <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> such that the Frobenius norm of <span><math><mi>A</mi><mi>X</mi><mo>−</mo><mi>B</mi></math></span> is minimized. When <span><math><mi>A</mi></math></span> is the set of the matrices whose symmetric part is positive semidefinite, we obtain the so-called non-symmetric positive semidefinite Procrustes (NSPSDP) problem. The NSPSDP problem arises in the estimation of compliance or stiffness matrix in solid and elastic structures. If <em>X</em> has rank <em>r</em>, Baghel et al. (2022) <span><span>[4]</span></span> proposed a three-step semi-analytical approach: (1) construct a reduced NSPSDP problem in dimension <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span>, (2) solve the reduced problem by means of a fast gradient method with a linear rate of convergence, and (3) post-process the solution of the reduced problem to construct a solution of the larger original NSPSDP problem. In this paper, we revisit this approach of Baghel et al. and identify an unnecessary assumption used by the authors leading to cases where their algorithm cannot attain a minimum and produces solutions with unbounded norm. In fact, revising the post-processing phase of their semi-analytical approach, we show that the infimum of the NSPSDP problem is always attained, and we show how to compute a minimum-norm solution. We also prove that the symmetric part of the computed solution has minimum rank bounded by <em>r</em>, and that the skew-symmetric part has rank bounded by 2<em>r</em>. Several numerical examples show the efficiency of this algorithm, both in terms of computational speed and of finding optimal minimum-norm solutions.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 21-48"},"PeriodicalIF":1.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144313378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laplacian eigenvalue distribution in terms of degree sequence","authors":"S. Akbari , M. Alaeiyan , M. Darougheh","doi":"10.1016/j.laa.2025.06.010","DOIUrl":"10.1016/j.laa.2025.06.010","url":null,"abstract":"<div><div>Let <em>G</em> be a graph with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Suppose that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mi>I</mi></math></span> denotes the number of Laplacian eigenvalues of <em>G</em> in an interval <em>I</em>. This paper presents some bounds on the number of Laplacian eigenvalues contained in the various subintervals of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> in terms of the degree sequence of <em>G</em>. We show that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>[</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>n</mi><mo>]</mo><mo>=</mo><mn>2</mn></math></span> if and only if <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo></math></span>. Additionally, we characterize all graphs for which <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>[</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>n</mi><mo>]</mo><mo>=</mo><mn>2</mn></math></span>. Moreover, we classify all graphs such that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 49-61"},"PeriodicalIF":1.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertex partitioning and p-energy of graphs","authors":"Saieed Akbari , Hitesh Kumar , Bojan Mohar , Shivaramakrishna Pragada","doi":"10.1016/j.laa.2025.06.009","DOIUrl":"10.1016/j.laa.2025.06.009","url":null,"abstract":"<div><div>For a Hermitian matrix <em>A</em> of order <em>n</em> with eigenvalues <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, define<span><span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></munder><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mspace></mspace><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mrow></munder><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></math></span></span></span> to be the positive and the negative <em>p</em>-energy of <em>A</em>, respectively. In this note, first we show that if <span><math><mi>A</mi><mo>=</mo><msubsup><mrow><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>, where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub></math></span> are square matrices, then<span><span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo><mo>≥</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo><mo>≥</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> for any real number <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>. We then apply the previous inequalities to establish lower bounds for <em>p</em>-energy of the adjacency matrix of graphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 96-107"},"PeriodicalIF":1.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Davis-Wielandt shells of 4 by 4 matrices","authors":"Mao-Ting Chien , Hiroshi Nakazato","doi":"10.1016/j.laa.2025.06.006","DOIUrl":"10.1016/j.laa.2025.06.006","url":null,"abstract":"<div><div>In this paper, we study possible degrees of the boundary generating surfaces of the Davis-Wielandt shells of 4-by-4 upper triangular unitarily irreducible matrices. The degree can be any even number between 6 and 36 except 14,26 and 30.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 182-200"},"PeriodicalIF":1.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orthogonalisability of joins of graphs","authors":"Rupert H. Levene , Polona Oblak , Helena Šmigoc","doi":"10.1016/j.laa.2025.06.001","DOIUrl":"10.1016/j.laa.2025.06.001","url":null,"abstract":"<div><div>A graph is said to be orthogonalisable if the set of real symmetric matrices whose off-diagonal pattern is prescribed by its edges contains an orthogonal matrix. We determine some necessary and some sufficient conditions on the sizes of the connected components of two graphs for their join to be orthogonalisable. In some cases, those conditions coincide, and we present several families of joins of graphs that are orthogonalisable.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 162-181"},"PeriodicalIF":1.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On indefinite-inner-product spaces induced by non-zero-scaled hypercomplex numbers","authors":"Daniel Alpay , Ilwoo Cho","doi":"10.1016/j.laa.2025.06.002","DOIUrl":"10.1016/j.laa.2025.06.002","url":null,"abstract":"<div><div>In this paper, we consider a new type of adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> on the algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of all <em>t</em>-scaled hypercomplex numbers over the real field <span><math><mi>R</mi></math></span>, for all “non-zero” scales <span><math><mi>t</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>. We show that such a <span><math><mi>R</mi></math></span>-adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span> generates a well-defined indefinite inner product <span><math><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, inducing a complete indefinite inner product space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mo>[</mo><mo>,</mo><mo>]</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> over <span><math><mi>R</mi></math></span>. Analysis and operator theory on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is considered up to this adjoint <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>. As application, by regarding <em>t</em>-scaled hypercomplex numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as embedded subset <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>, the corresponding (usual operator-theoretic) spectral theory on <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> is studied (over the complex field <span><math><mi>C</mi></math></span>). And we study relations between these usual spectral-theoretic results and the operator-theoretic results obtained from the <span><math><mo>[</mo><mo>⁎</mo><mo>]</mo></math></span>-depending structures; and then the free distributions of self-adjoint matrices of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> are characterized up to the normalized trace <em>τ</em> on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 99-161"},"PeriodicalIF":1.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximal determinants of matrices over the roots of unity","authors":"Guillermo Nuñez Ponasso","doi":"10.1016/j.laa.2025.05.024","DOIUrl":"10.1016/j.laa.2025.05.024","url":null,"abstract":"<div><div>We study the maximum absolute value of the determinant of matrices with entries in the set of <em>ℓ</em>-th roots of unity — this is a generalization of <em>D</em>-optimal designs and Hadamard's maximal determinant problem, which involves ±1 matrices. For general values of <em>ℓ</em>, we give sharpened determinantal upper bounds and constructions of matrices of large determinant. The maximal determinant problem in the cases <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>, <span><math><mi>ℓ</mi><mo>=</mo><mn>4</mn></math></span> is similar to the classical Hadamard maximal determinant problem for matrices with entries ±1, and many techniques can be generalized. For <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span> we give an additional construction of matrices with large determinant, and calculate the value of the maximal determinant of matrices with entries in the third-roots of unity for all orders <span><math><mi>n</mi><mo><</mo><mn>14</mn></math></span>. Additionally, we survey the case <span><math><mi>ℓ</mi><mo>=</mo><mn>4</mn></math></span> and exhibit an infinite family of maximal determinant matrices of odd order over the fourth roots of unity.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 201-243"},"PeriodicalIF":1.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algebraic notes on testing sets for lower and upper grids","authors":"Eduardo Marques de Sá","doi":"10.1016/j.laa.2025.05.022","DOIUrl":"10.1016/j.laa.2025.05.022","url":null,"abstract":"<div><div>For a given finite dimensional subspace <span><math><mi>P</mi></math></span> of <span><math><mi>k</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, where <em>k</em> is a field, a subset <span><math><mi>N</mi><mo>⊆</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a <span><math><mi>P</mi></math></span><em>-testing set</em> if any member of <span><math><mi>P</mi></math></span> that vanishes at all points of <span><math><mi>N</mi></math></span>, vanishes all over <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>; and we say <span><math><mi>N</mi></math></span> is <em>optimal</em> if it has the smallest cardinality among all <span><math><mi>P</mi></math></span>-testing sets. This is related to Lagrangian interpolation of data on a set <span><math><mi>N</mi></math></span> of nodes using functions from <span><math><mi>P</mi></math></span>. We consider a <em>generic version</em> of this interpolation problem, when <span><math><mi>P</mi></math></span> has a monomial basis <span><math><mi>B</mi></math></span> that we identify with a <em>grid</em> (i.e. a finite subset of <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mspace></mspace><mi>n</mi></mrow></msubsup></math></span>), each node is an <em>n</em>-tuple of independent variables and the set of nodes is identified with a grid <span><math><mi>C</mi><mo>⊆</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mspace></mspace><mi>n</mi></mrow></msubsup></math></span>. A corollary to our main result offers an explicit formula for the determinant of the linear system corresponding to the generic interpolation problem in case <span><math><mi>B</mi><mo>=</mo><mi>C</mi></math></span> is a <em>σ</em>-lower (or <em>σ</em>-upper) grid, where we say <span><math><mi>B</mi></math></span> is a <em>σ-lower</em> (resp., <em>σ-upper</em>) <em>grid</em> if it is a union of intervals of <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mspace></mspace><mi>n</mi></mrow></msubsup></math></span> having <em>σ</em> as common origin (resp., endpoint). We give explicit (optimal) <span><math><mi>P</mi></math></span>-testing sets for spaces having monomial bases determined by <em>σ</em>-lower (or <em>σ</em>-upper) grids. The corollaries at the end, for the finite field case, have potential use in Number Theory and Coding Theory.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 78-98"},"PeriodicalIF":1.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grothendieck group of the Leavitt path algebra over power graphs of prime-power cyclic groups","authors":"Aslı Güçlükan İlhan , Müge Kanuni , Ekrem Şimşek","doi":"10.1016/j.laa.2025.05.021","DOIUrl":"10.1016/j.laa.2025.05.021","url":null,"abstract":"<div><div>In this paper, the Grothendieck group of the Leavitt path algebra over the power graphs of all prime-power cyclic groups is studied by using a well-known computation from linear algebra. More precisely, the Smith normal form of the matrix derived from the adjacency matrix associated with the power graph of prime-power cyclic group is calculated.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"723 ","pages":"Pages 58-77"},"PeriodicalIF":1.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decomposable numerical ranges of normal matrices","authors":"Pan-Shun Lau , Chi-Kwong Li , Nung-Sing Sze","doi":"10.1016/j.laa.2025.05.016","DOIUrl":"10.1016/j.laa.2025.05.016","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the set of <span><math><mi>n</mi><mo>×</mo><mi>k</mi></math></span> (<span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>) complex matrices, and <span><math><mrow><mi>per</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the permanent of a square matrix <em>X</em>. We study the three types of generalized numerical ranges associated with generalized matrix functions<span><span><span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><munderover><mo>∏</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>det</mi><mo></mo><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mi>per</mi></mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We give complete descriptions of the set <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for essentially hermitian matrices <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 237-254"},"PeriodicalIF":1.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}