{"title":"帧和量子信道的相位可恢复性","authors":"Kai Liu, Deguang Han","doi":"10.1016/j.laa.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>A phase retrievable quantum channel refers to a quantum channel <span><math><mi>Φ</mi><mo>:</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> such that there is a positive operator valued measure (POVM) <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> in <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> is a phase retrievable operator valued frame. In this paper we examine the phase retrievable quantum channels in terms of their Kraus representations. For quantum channels Φ of Choi rank-2, we obtain a necessary and sufficient condition under which it is phase retrievable. For the general case, we present several necessary and/or sufficient conditions. In particular, a necessary and sufficient condition is obtained in terms of the relevant matrix-valued joint spectrum of the Kraus operators. Additionally, we also examine, by examples, the problem of constructing quantum channels such that there exists a minimal number of rank-one observables <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> does phase retrieval for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>. Conversely, for a given set of rank-one observables <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>, we present a sufficient condition under which, for every given <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>N</mi></math></span>, a phase retrievable quantum channel Φ of Choi rank-<em>r</em> can be explicitly constructed.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 378-400"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase retrievability of frames and quantum channels\",\"authors\":\"Kai Liu, Deguang Han\",\"doi\":\"10.1016/j.laa.2025.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A phase retrievable quantum channel refers to a quantum channel <span><math><mi>Φ</mi><mo>:</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> such that there is a positive operator valued measure (POVM) <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> in <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> is a phase retrievable operator valued frame. In this paper we examine the phase retrievable quantum channels in terms of their Kraus representations. For quantum channels Φ of Choi rank-2, we obtain a necessary and sufficient condition under which it is phase retrievable. For the general case, we present several necessary and/or sufficient conditions. In particular, a necessary and sufficient condition is obtained in terms of the relevant matrix-valued joint spectrum of the Kraus operators. Additionally, we also examine, by examples, the problem of constructing quantum channels such that there exists a minimal number of rank-one observables <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> does phase retrieval for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>. Conversely, for a given set of rank-one observables <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>, we present a sufficient condition under which, for every given <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>N</mi></math></span>, a phase retrievable quantum channel Φ of Choi rank-<em>r</em> can be explicitly constructed.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 378-400\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002988\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002988","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Phase retrievability of frames and quantum channels
A phase retrievable quantum channel refers to a quantum channel such that there is a positive operator valued measure (POVM) in and is a phase retrievable operator valued frame. In this paper we examine the phase retrievable quantum channels in terms of their Kraus representations. For quantum channels Φ of Choi rank-2, we obtain a necessary and sufficient condition under which it is phase retrievable. For the general case, we present several necessary and/or sufficient conditions. In particular, a necessary and sufficient condition is obtained in terms of the relevant matrix-valued joint spectrum of the Kraus operators. Additionally, we also examine, by examples, the problem of constructing quantum channels such that there exists a minimal number of rank-one observables such that does phase retrieval for . Conversely, for a given set of rank-one observables , we present a sufficient condition under which, for every given , a phase retrievable quantum channel Φ of Choi rank-r can be explicitly constructed.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.