帧和量子信道的相位可恢复性

IF 1.1 3区 数学 Q1 MATHEMATICS
Kai Liu, Deguang Han
{"title":"帧和量子信道的相位可恢复性","authors":"Kai Liu,&nbsp;Deguang Han","doi":"10.1016/j.laa.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>A phase retrievable quantum channel refers to a quantum channel <span><math><mi>Φ</mi><mo>:</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> such that there is a positive operator valued measure (POVM) <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> in <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> is a phase retrievable operator valued frame. In this paper we examine the phase retrievable quantum channels in terms of their Kraus representations. For quantum channels Φ of Choi rank-2, we obtain a necessary and sufficient condition under which it is phase retrievable. For the general case, we present several necessary and/or sufficient conditions. In particular, a necessary and sufficient condition is obtained in terms of the relevant matrix-valued joint spectrum of the Kraus operators. Additionally, we also examine, by examples, the problem of constructing quantum channels such that there exists a minimal number of rank-one observables <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> does phase retrieval for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>. Conversely, for a given set of rank-one observables <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>, we present a sufficient condition under which, for every given <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>N</mi></math></span>, a phase retrievable quantum channel Φ of Choi rank-<em>r</em> can be explicitly constructed.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 378-400"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase retrievability of frames and quantum channels\",\"authors\":\"Kai Liu,&nbsp;Deguang Han\",\"doi\":\"10.1016/j.laa.2025.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A phase retrievable quantum channel refers to a quantum channel <span><math><mi>Φ</mi><mo>:</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> such that there is a positive operator valued measure (POVM) <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> in <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> is a phase retrievable operator valued frame. In this paper we examine the phase retrievable quantum channels in terms of their Kraus representations. For quantum channels Φ of Choi rank-2, we obtain a necessary and sufficient condition under which it is phase retrievable. For the general case, we present several necessary and/or sufficient conditions. In particular, a necessary and sufficient condition is obtained in terms of the relevant matrix-valued joint spectrum of the Kraus operators. Additionally, we also examine, by examples, the problem of constructing quantum channels such that there exists a minimal number of rank-one observables <span><math><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mo>{</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> does phase retrieval for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>. Conversely, for a given set of rank-one observables <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>, we present a sufficient condition under which, for every given <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>N</mi></math></span>, a phase retrievable quantum channel Φ of Choi rank-<em>r</em> can be explicitly constructed.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 378-400\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002988\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002988","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

相位可回收量子通道是指这样一个量子通道Φ:B(HA)→B(HB),使得在B(HB)中存在一个正算子值测度(POVM) {Fj},并且{Φ (Fj)}是一个相位可回收算子值帧。本文研究了相位可恢复量子信道的克劳斯表示。对于Choi秩2的量子通道Φ,我们得到了其相位可恢复的充分必要条件。对于一般情况,我们给出了几个必要和/或充分条件。特别地,得到了Kraus算子的相关阵值联合谱的一个充要条件。此外,我们还通过实例研究了构造量子通道的问题,使得存在最小数量的一级可观测值{Fj},使得{Φ (Fj)}对HA进行相位检索。相反地,对于给定的秩一观测集合{Fj}j=1N,我们给出了一个充分条件,在此条件下,对于每一个给定1≤r≤N,可以显式构造一个Choi秩r的相位可恢复量子通道Φ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase retrievability of frames and quantum channels
A phase retrievable quantum channel refers to a quantum channel Φ:B(HA)B(HB) such that there is a positive operator valued measure (POVM) {Fj} in B(HB) and {Φ(Fj)} is a phase retrievable operator valued frame. In this paper we examine the phase retrievable quantum channels in terms of their Kraus representations. For quantum channels Φ of Choi rank-2, we obtain a necessary and sufficient condition under which it is phase retrievable. For the general case, we present several necessary and/or sufficient conditions. In particular, a necessary and sufficient condition is obtained in terms of the relevant matrix-valued joint spectrum of the Kraus operators. Additionally, we also examine, by examples, the problem of constructing quantum channels such that there exists a minimal number of rank-one observables {Fj} such that {Φ(Fj)} does phase retrieval for HA. Conversely, for a given set of rank-one observables {Fj}j=1N, we present a sufficient condition under which, for every given 1rN, a phase retrievable quantum channel Φ of Choi rank-r can be explicitly constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信