L. Emilio Allem , Carlos Hoppen , João Lazzarin , Lucas Siviero Sibemberg , Fernando Colman Tura
{"title":"阈值图的不同特征值的最小个数不超过4个","authors":"L. Emilio Allem , Carlos Hoppen , João Lazzarin , Lucas Siviero Sibemberg , Fernando Colman Tura","doi":"10.1016/j.laa.2025.07.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we show that the minimum number of distinct eigenvalues of a threshold graph is at most 4. Moreover, given any threshold graph <em>G</em> and any nonzero real number <em>λ</em>, we explicitly construct a matrix <em>M</em> associated with <em>G</em> such that DSpec<span><math><mo>(</mo><mi>M</mi><mo>)</mo><mo>⊆</mo><mo>{</mo><mo>−</mo><mi>λ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mi>λ</mi><mo>,</mo><mn>2</mn><mi>λ</mi><mo>}</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"726 ","pages":"Pages 32-53"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minimum number of distinct eigenvalues of a threshold graph is at most 4\",\"authors\":\"L. Emilio Allem , Carlos Hoppen , João Lazzarin , Lucas Siviero Sibemberg , Fernando Colman Tura\",\"doi\":\"10.1016/j.laa.2025.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we show that the minimum number of distinct eigenvalues of a threshold graph is at most 4. Moreover, given any threshold graph <em>G</em> and any nonzero real number <em>λ</em>, we explicitly construct a matrix <em>M</em> associated with <em>G</em> such that DSpec<span><math><mo>(</mo><mi>M</mi><mo>)</mo><mo>⊆</mo><mo>{</mo><mo>−</mo><mi>λ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mi>λ</mi><mo>,</mo><mn>2</mn><mi>λ</mi><mo>}</mo></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"726 \",\"pages\":\"Pages 32-53\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The minimum number of distinct eigenvalues of a threshold graph is at most 4
In this note we show that the minimum number of distinct eigenvalues of a threshold graph is at most 4. Moreover, given any threshold graph G and any nonzero real number λ, we explicitly construct a matrix M associated with G such that DSpec.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.