利用矩阵Cauchy-Schwarz不等式证明Lee关于Frobenius范数的猜想

IF 1.1 3区 数学 Q1 MATHEMATICS
Teng Zhang
{"title":"利用矩阵Cauchy-Schwarz不等式证明Lee关于Frobenius范数的猜想","authors":"Teng Zhang","doi":"10.1016/j.laa.2025.07.017","DOIUrl":null,"url":null,"abstract":"<div><div>In 2010, Eun-Young Lee conjectured that if <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> are two <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow></math></span> are the absolute values of <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span>, respectively, then<span><span><span><math><msub><mrow><mo>‖</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>≤</mo><msqrt><mrow><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msqrt><msub><mrow><mo>‖</mo><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> is the Frobenius norm of matrices. This conjecture has been proven by Lin and Zhang (2022) <span><span>[3]</span></span> by studying inequalities for the angle between two matrices induced by the Frobenius inner product. In this paper, we present a new proof of the same result, relying solely on the Cauchy-Schwarz inequality.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 355-358"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new proof of Lee's conjecture on the Frobenius norm via the matrix Cauchy-Schwarz inequality\",\"authors\":\"Teng Zhang\",\"doi\":\"10.1016/j.laa.2025.07.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2010, Eun-Young Lee conjectured that if <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> are two <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow></math></span> are the absolute values of <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span>, respectively, then<span><span><span><math><msub><mrow><mo>‖</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>≤</mo><msqrt><mrow><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msqrt><msub><mrow><mo>‖</mo><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> is the Frobenius norm of matrices. This conjecture has been proven by Lin and Zhang (2022) <span><span>[3]</span></span> by studying inequalities for the angle between two matrices induced by the Frobenius inner product. In this paper, we present a new proof of the same result, relying solely on the Cauchy-Schwarz inequality.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 355-358\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003015\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2010年,Eun-Young Lee推测若A、B是两个n×n复矩阵,且|A|、|B|分别是A、B的绝对值,则‖A+B‖F≤1+22‖|A|+|B|‖F,其中‖⋅‖F为矩阵的Frobenius范数。Lin和Zhang(2022)[3]通过研究由Frobenius内积引起的两个矩阵夹角的不等式证明了这一猜想。在本文中,我们仅依靠Cauchy-Schwarz不等式给出了对相同结果的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new proof of Lee's conjecture on the Frobenius norm via the matrix Cauchy-Schwarz inequality
In 2010, Eun-Young Lee conjectured that if A,B are two n×n complex matrices and |A|,|B| are the absolute values of A,B, respectively, thenA+BF1+22|A|+|B|F, where F is the Frobenius norm of matrices. This conjecture has been proven by Lin and Zhang (2022) [3] by studying inequalities for the angle between two matrices induced by the Frobenius inner product. In this paper, we present a new proof of the same result, relying solely on the Cauchy-Schwarz inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信